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Abstract 

Tran, Nhu Quynh T. Ph.D. The University of Memphis. December 2011. EGFR 
Regulation of Epidermal Barrier Function. Major Professor: Thomas R. Sutter, Ph.D. 

Keratinocyte terminal differentiation is the process that ultimately forms the 

epidermal barrier that is essential for mammals to survive in the ex utero environment.  

This process is tightly controlled by the expression of many well-characterized genes.  

Although a few of these genes are known to be regulated by the epidermal growth factor 

receptor (EGFR), an important regulator of multiple epidermal functions, neither the 

genome-wide scale of EGFR-mediated regulation nor the mechanisms by which EGFR 

signaling controls keratinocyte differentiation are well understood.  Using microarray 

analysis we identified 2,676 genes that are regulated by EGF, a ligand of the EGFR. We 

further discovered, and separately confirmed by functional assays, that EGFR activation 

abrogates all essential metabolic processes of keratinocyte differentiation by (1) 

decreasing the expression of lipid matrix biosynthetic enzymes, (2) regulating numerous 

genes forming the cornified envelope, and (3) suppressing the expression of tight junction 

proteins.  In organotypic cultures of skin, the collective effect of EGF impaired epidermal 

barrier integrity, evidenced by increased transepidermal water loss.  As defective 

epidermal differentiation and disruption of the epidermal barrier are primary features of 

many human skin diseases, we used bioinformatics analysis to identify genes that are 

known to be associated with human skin diseases. In comparison to non-EGF-regulated 

genes, the EGF-regulated gene list was significantly enriched for disease genes.  Further 

validation of the expression profiles of many of the 114 identified skin disease genes 

included the transcription factors GATA binding protein 3 (GATA3) and Kruppel-like 

factor 4 (KLF4), both required for establishing the barrier function of the skin in 
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developing mice.  These results provide a new systems level understanding of the actions 

of EGFR signaling to inhibit keratinocyte differentiation.  As the overall effect of this 

inhibition is to impair epidermal barrier integrity, this study clarifies how dysregulation 

of the EGFR and its ligands may contribute to diseases of the skin. 
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INTRODUCTION AND BACKGROUND 

Origins of the Skin Epithelium 

In mammals, the skin is the largest organ in the integumentary system, consisting of 3 

different layers, the epidermis, dermis, and hypodermis (subcutaneous tissue) (Figure 1).  

The epidermis originates from the outermost layer, or ectoderm, of a 3-layered embryo.  

When cells in this layer respond to Wnt signaling, they are fated to develop into the 

epidermis.  Wnt signaling blocks the ability of ectoderm to respond to FGF signaling, 

causing expression of bone morphogenetic proteins (BMPs) which signal the epidermis, 

instead of the nervous systems to develop (Stern, 2005).  The ectodermal cells produce 

predominantly mucoproteins (in fish) or keratinaceous proteins in land dwelling animals 

(Flaxman and Maderson, 1976).  In higher vertebrates,  there are two distinct categories 

of keratinaceous proteins, the hair or alpha-type and the feather or beta-type (Baden and 

Maderson, 1970).  In the vertebrate epidermis, the alpha-keratin is mostly synthesized 

(Flaxman, 1972). 

The dermis is mesenchymal tissue that originates from the middle layer, or mesoderm 

of the embryo (Flaxman and Maderson, 1976).  The mesenchymal cells produce dermal 

fibroblasts which secrete the precursors of self-assembling, extracellular collagen, elastin, 

glycoproteins, and glucosaminoglycans (Flaxman and Maderson, 1976).  These cells also 

give rise to dermal blood vessels and fat cells. Mesenchymal cell fate is specified by Wnt 

signaling (Atit et al., 2006).  Interaction between the mesenchyme and ectoderm is 

essential throughout the entire life of the organism.  This interaction induces the 

formation of hair placodes which respond to signals produced by FGFs and BMP-

inhibitory factors to determine their position and density (Fuchs, 2007).  In parallel, 
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epidermal cells are also directed by the ectodermal Wnt signals to grow downward to 

form the hair bud or placode (Fuchs, 2007).  The formation of the hair follicle may also 

be controlled by epidermal growth factor receptor (EGFR) signaling.  Studies in chicks 

indicate that elevated levels of EGF increases the proliferation of interbud epidermal cells, 

whereas inhibition of EGFR signaling increases the acquisition of a feather bud fate (Atit 

et al., 2003).  In mammalian skin, EGFR signaling is associated with enhanced epidermal 

proliferation and hair loss (Blanpain and Fuchs, 2006).   

 At the end of embryonic development, the interfollicular epidermis reaches 

maturity and is composed of multiple layers that form the outermost structure of the skin.  

The epidermis undergoes a process called homeostasis in which dividing cells in the 

innermost layer continually move outwards to replace terminally differentiated cells 

being sloughed off from the skin surface.  Structure and function of the epidermis are 

discussed in the next sections. 

 
Figure 1. Normal skin  
Skin consists of 3 major layers: epidermis, dermis, and hypodermis.  The epidermis is a 
stratified epithelium (Figure 2). The dermis is connective tissue with hair follicle, blood 
vessels, and sebaceous glands embedded in it. The hypodermis consists mostly of 
adipocytes.  Adapted from http://blog.celluliterxworks.com/blog/page/5/. 
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Structure and Function of the Epidermis 

The epidermis is the outer layer of the skin.  It consists of 4 principal layers, the 

stratum corneum (SC), the stratum granulosum (SG), the stratum spinosum (SP), and the 

stratum basale (SB) (Figure 2).  Together, these layers form a barrier which is essential 

for life.  The barrier prevents the body from dehydration in a dry environment and 

reduces hydration in a humid environment.  It blocks the penetration of microorganisms 

and destructive chemicals.  It protects the body from harmful ultraviolet radiation.  The 

epidermis is capable of self-repair and has the mechanical strength to withstand damage.   

These functions of the skin barrier are accomplished by epidermal cells, the keratinocytes.  

The keratinocytes are the major cell population in the epidermis.  They play a critical role 

in providing the properties of the epidermal barrier.  

 
Keratinocytes 

The structure of the keratinocyte depends on its position within the epidermis and its 

state of differentiation.  In all keratinocytes the primary elements of the cytoskeleton are 

the intermediate filaments.  These intermediate filaments are made of keratin proteins, 

which are bundled and span throughout the cytoplasm from the nuclear envelope to the 

desmosomes (Leigh et al., 1994).   Keratins are alpha-helical molecules and can be 

divided into two subfamilies: Type I (acidic keratins; pI < 5.5) and Type II (basic keratins; 

pI > 6) (Eichner et al., 1984).  An acidic and a basic keratin are paired to form 

heteropolymers, which are assembled into filaments (Coulombe and Fuchs, 1990).  The 

expression of keratins changes during epidermal differentiation. For example, early 

differentiation markers such as KRT1 and KRT10 start to replace KRT5 and KRT14 as the 

cells migrate to the stratum spinosum from the stratum basale. 
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Figure 2. The Four Principal Layers of the Epidermis  
The epidermis is a stratified keratinized squamous epithelium consisting of four different layers: stratum basale, stratum spinosum, 
stratum granulosum, and stratum corneum.  The major cell type in the epidermis is the keratinocyte, which undergoes terminal 
differentiation to form the corneocyte.  Other cell types include melanocytes (UV protection), Langerhans cells (immunity), and 
Merkel cells (touch).  The locations of certain markers of keratinocytes differentiation such as KRT5, KRT14, KRT1, KRT10, IVL, 
FLG, LOR, and TGM1 are shown.  Adapted from (Candi et al., 2005; Garrett et al., 2002). 
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Other cytoskeleton elements include microfilaments and microtubules, which 

contribute to the movement of cells in culture and in tissue.  These structures enhance the 

communication within the cell and between the cell and its environment (Leigh et al., 

1994).  It has been shown that there is a physical association between intermediate 

filaments and microfilaments in mouse epidermal keratinocytes before and after raising 

the Ca2+ level in culture media (Green et al., 1987).  During mitosis and keratinocyte 

differentiation, the pattern of organization of the intermediate filaments, microfilaments, 

and microtubules cytoskeleton coordinately change (Lewis et al., 1987; Zamansky et al., 

1991). 

A second feature common to keratinocytes of all layers, except the stratum 

corneum (the outermost layer), are desmosomes and focal junctions between adjacent 

keratinocytes.  These structures attach keratin filaments within the cell and include 

intracellular and extracellular components that function in cell-to-cell adhesion 

(Steinberg et al., 1987).  Keratinocytes adhere at desmosomes through interaction of 

transmembrane glycoproteins tha belong to the cadherin families known as desmogleins 

and desmocollins (Figure 3A).  Desmosomes have mirror image plaques that sandwich a 

membrane core region.  The plaques are present beneath the plasma membrane of each 

keratinocytes and associate with keratin filaments via plaque proteins such as plakoglobin 

and desmoplakin (Figure 3A) (Green and Jones, 1996). The intermediate filament 

anchorage of the plaques creates a transcellular network that is thought to resist forces of 

mechanical stress (Green and Jones, 1996).  Keratinocytes in cultures form focal contacts 

with their substrate and form adherens and gap junctions with each other in cultures and 

in tissue (Burridge et al., 1988).   
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Figure 3. Desmosomes and Hemidesomsomes Structures of a Basal 
Keratinocyte 
(A) Desmosomes. Desmosomes are primary components that maintain the 
integrity of epidermal cell cohesion.  The intracellular desmosomal plaque 
proteins include desmoplakin, plakoglobin, plakophilin, envoplakin, and 
periplakin, which interact with intercellular plaques to connect transmembrane 
adhesion molecules such as the desmogleins and desmocollins with keratins of 
the cytoskeleton.  
(B) Hemidesmosomes are components of the basement membrane. 
Hemidesmosomes connect the basal keratinocytes to the basement membrane.  
The intracellular hemidesmosomal proteins include BP230 and plectin that are 
linked to keratins and interact with the cytoplasmic domains of BP180 and α6β4 
integrin, which in turn interact with laminin 332 via their ectodomains (Hertl et 
al., 2006). 
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Layers of the Epidermis 

Stratum Basale 

 Cells in the stratum basale have a columnar shape and attach to the basement 

membrane (Figure 2).  The association between the basal cells and the basement 

membrane is very important for the physical and mechanical integration of the epidermis 

as well as the regulatory signal to restrain or differentiate (Watt et al., 1988). The 

proliferation of keratinocytes is only found in the stratum basale.  This basal layer 

contains epidermal stem cells that continuously provide new cells to repopulate the 

epidermis (Lavker et al., 1993).  Besides stem cells, there are transit amplifying cells and 

postmitotic cells that are ready to move into the suprabasal layers.  Basal keratinocytes 

also contain melanosomes, the pigment granules that provide tissues with color and 

photoprotection.  These melanosomes produce, store, and transport melanin pigments.  

They are synthesized in melanocytes (Wasmeier et al., 2008) (Figure 2) and phagocytized 

into vacuoles either in clusters (caucasian skin) or individually (black skin).  Most of 

these vacuoles or melanosome complexes are degraded within the spinous layer (Leigh et 

al., 1994). 

The mechanical strength of basal cells is provided by the structure, composition, 

organization and stability of the keratin filament cytoskeleton even though keratin 

comprises only 30% of the protein present in the basal cells (Leigh et al., 1994).  The 

cytoskeleton of the basal layer contains KRT5, KRT14, and small amounts of KRT15, 

which anchor the epidermis firmly to its substratum (Porter and Lane, 2003).  The keratin 

intermediate filaments are grouped in bundles surrounding the nucleus, but do not attach 

to it (Figure 3).  Mutations in basal cells keratin polypeptides and abnormaltities in 
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keratin filament assembly are seen in disorders such as epidermolysis bullosa simplex 

(EBS) (Bonifas et al., 1991; Coulombe et al., 1991). 

The interface between the basal keratinocyte and the dermis is a complex 

structure.  The basement membrane is joined with the plasma membrane of the basal cells 

by hemidesmosomes (Figure 3B). The hemidesmosome and the desmosome exhibit 

similar structural characteristics, but each also has unique morphologic and 

compositional features (Green and Jones, 1996).  Both junctions are composed of a 

tripartite electron-dense plaque with cytoplasmic and membrane-related domains.  The 

proteins of the hemidesmosomal plaque are well characterized. The primary protein of 

the hemidesmosomal plaque is the bullous pemphigoid (BP) antigen (BP230) (Tanaka et 

al., 1991).  BP230 proteins are found in the regions of hemidesmosome plaque to which 

keratin intermediate filaments attach (Jones et al., 1994).  BP230 has some structural and 

amino acid homology with one of the desmosomal plaque proteins (Tanaka et al., 1991). 

The membrane-bound molecules of hemidesmosomes include integrins, which are 

heterodimeric matrix receptors.  Besides linking the extracellular matrix and the 

cytoskeleton of the cells, these receptors also act to transduce signals (Giancotti et al., 

1992).  There are α and β subunits in each receptor.  The α6 subunit can bind either the 

β1 or β4, but binds preferentially with the β4 integrin subunit (Giancotti et al., 1992).  

This β4 integrin is unique among the β integrins with its extended carboxy-terminal 

cytoplasmic tail of 1000 amino acids (Hogervorst et al., 1990).  This tail is physically 

associated with one or more protein kinases. When the extracellular ligands interact with 

the α6β4 receptors, β4 becomes phosphorylated on tyrosine (Mainiero et al., 1995).  It 

has been shown that a tyrosine phosphorylation site in the cytoplasmic domain of β4 
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triggers binding of the signaling adaptor Shc (Src homologous collagen protein), which 

upon phosphorylation recruits the adaptor Grb2 (growth factor receptor binding protein 

2), linking the integrin to the Ras signaling pathway (Mainiero et al., 1995).  Another 

membrane molecule is the BP180 protein, also known as type XVII collagen (Giudice et 

al., 1991; Hopkinson et al., 1992) (Figure 3B). This protein has been shown to be missing 

from the skin of individuals carrying generalized atrophic benign epidermolysis bullosa 

(Jonkman et al., 1995; McGrath et al., 1995).  The lack of BP180 proteins in the skin 

weakens the attachment of the epidermal cells to the basement membrane, leading to 

blistering.  In autoimmune diseases such as bullous pemphigoid and gestationis, BP180 is 

a target for pathogenic antibodies (Giudice et al., 1993).  The matrix molecules include 

laminin 332 (previously known as laminin 5), which is composed of three subunits 

termed α3, β3, and γ2 (Tryggvason, 1993).  They are concentrated in the basement 

membrane zone immediately underlying the hemidesmosome (Jones et al., 1994).  

Laminin 332 can interact with several cell-surface receptors including α6β4, α3β1, EGFR 

and syndecan 1 (Marinkovich, 2007).  This protein has been shown to be deficient in the 

skin of patients with a genetic disease called junctional epidermolysis bullosa (Kivirikko 

et al., 1995; Pulkkinen et al., 1994). 

In addition to structural proteins, there are other proteins with regulatory function 

such as basonuclin (BNC1), a zinc-finger protein mainly expressed in basal keratinocytes 

and the outer root sheath of hair follicles.  Immunocytological experiments using Ki-67, a 

common marker of proliferating cells, and bromodeoxyuridine (BrdU) incorporation into 

DNA, have demonstrated that BNC1 is present in cells that are able to enter the growth 

cycle, but disappears in terminally differentiated cells that have irreversibly withdrawn 



www.manaraa.com

10 
 

from the cell cycle (Tseng and Green, 1994).  The ability of BNC1 to associate with 

ribosomal RNA genes on human keratinocyte mitotic chromosomes, as well as its own 

gene promoter, has identified BNC1 as a transcription factor with the unsual ability to 

interact with promoters of both RNA polymerases I and II (Tian et al., 2001; Tseng et al., 

1999).  This notion is supported by a study in which mouse oocytes with Bnc1 knock-

down exhibits a large perturbed number of RNA polymerase II transcripts (Ma et al., 

2006). 

Stratum Spinosum 

As cells leave the basal layer and move to the spinosum layer, their shape changes 

from columnar to polygonal (Figure 2).  Spinous cells are joined by ‘spines’ that extend 

from the cell surface (Leigh et al., 1994).  The spines are formed by bundles of keratin 

filaments that insert into the desmosomal plaques of opposing cells.  As keratinocytes 

migrate to the stratum spinosum from the stratum basale, newly synthesized keratin 

polypeptides are added, thus increasing the quantity and diversity of keratin species.  

During this journey, many genes have been sequentially turned on and off to support the 

differentiation of keratinocytes.  For example, early differentiation markers such as KRT1 

and KRT10 start to replace KRT5 and KRT14.  Other important genes are also activated in 

the stratum spinosum such as involucrin (IVL), an important component of the cornified 

envelope, and transglutaminase-1 (TGM1), the enzyme that cross-links IVL and other 

substrates during the synthesis of the cornified envelope (Holbrook and Wolff, 1987). 

The first appearance of lamellar granules, also known as lamellar bodies, is seen 

in the uppermost spinous cells.  These structures have been observed by electron 

microscopy as round and oblong membrane-bound organelles containing disk-like lipid 
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bilayers (Odland and Holbrook, 1981).  They contain glucosylceramides, and other lipids, 

various hydrolytic enzymes (Madison et al., 1998), and other proteins including 

corneodesmosin (CDSN) (Serre et al., 1991).  Previously, lamellar granules were thought 

of as discrete granules produced from the Golgi apparatus, which then migrated to the 

cell surface, and fused with the plasma membrane.  However, this view was recently 

challenged by Norlen (Norlen, 2001).  Norlen proposed the “membrane folding” model in 

which the trans-Golgi network and lamellar bodies of the uppermost SG cells, as well as 

the multilamellar lipid matrix of the intercellular space at the border zone between the SG 

and SC, are part of one continuous membrane structure (Norlen, 2001).  In 2003, Norlen 

and his colleagues used a cryotransmission electron microscopy technique and provided 

evidence to support this hypothesis (Norlen et al., 2003).  The activities of the lamellar 

granules are very important for the permeability barrier formation and will be discussed 

in more detail in the section describing the granular cell layer. 

Stratum Granulosum 

The stratum granulosum is typically comprised of two to three layers of granular 

keratinocytes (Figure 2).  In the palm and sole, there are more granular layers.  Hallmarks 

of this layer are keratohyalin granules (KHG), which are composed of the intermediate 

filament-associated protein, profilaggin (proFLG).  ProFLG is synthesized in the granular 

cells and deposited to the intersections of keratin filament bundles (Leigh et al., 1994).  

KHG become larger as the cells move upward.  In some of the uppermost granular cells, 

the filaggrin subunits of proFLG may start to assist the aggregation and alignment of the 

keratin filaments (Leigh et al., 1994).  The quantity and composition of the keratins in the 

granular cells determine the structure of the KHG.  Reduction in KRT1 and KRT10 
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expression is observed in disorders of keratinization where KHG are often globular in 

shape and may have different substructures (Holbrook and Wolff, 1987).  In a group of 

ichthyosis vulgaris patients,  KHG and proFLG are reduced or absent (Sybert et al., 

1985). 

Another characteristic feature of the SG is the presence of the lamellar 

granules (LG).  LG are branched tubular structures continuous with the trans-Golgi 

network (Norlen et al., 2003).  LG contain many cargoes including glucosylceramides 

(GlcCer), sphingomyelin (SM) and other lipids (Madison et al., 1998), various hydrolytic 

enzymes, such as proteases, acid phosphatases, glucocidase, and lipases, and other 

proteins including cathepsin D (CTSD), CDSN, kallikerin (KLK)7, and KLK8 (Ishida-

Yamamoto et al., 2004).  These cargoes are synthesized at different times during 

keratinocyte differentiation and are transported independently through the trans-Golgi 

network and LG (Ishida-Yamamoto et al., 2004).  KLK7, KLK8, CDSN, and GlcCer are 

individually transported as aggregates and directly form bulbous protrusions of the trans-

Golgi network.  CTSD proteins are packed into small vesicles, some of which may join 

with LG from the trans-Golgi network.  As the LG move toward the apical surface, they 

fuse with the plasma membrane of the uppermost granular cells and extrude their 

contents into the intercellular space (Ishida-Yamamoto et al., 2004).  The major lipid 

components of the intercellular lipid matrix are ceramides (Cer), cholesterol (CHOL), 

and free fatty acid (FFA).  The lower pH at the SG/SC interface activates hydrolytic 

enzymes such as β-glucocerebrosidase (GBA) and acid sphingomyelinase to cleave 

glucose and choline phosphate from GlcCer and SM in order to form Cers.  Sterol 

sulfatase and phospholipase(s) are activated to help form CHOL and FFA from 
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cholesterol sulfate and glycerophospholipids, respectively.  GlcCer and SM are modified 

forms of ceramide products synthesized from de novo and salvage pathways, which occur 

as a series of steps catalyzed by enzymes located in the endoplasmic reticulum (ER) 

(Uchida and Holleran, 2008).  The initial condensation step, catalyzed by serine 

palmitoyltransferase (SPTLC), is the rate limiting step of the de novo synthesis, forming 

3-ketodihydro-sphingosine (Hornemann et al., 2009).  This product is reduced to 

sphinganine, which is then acylated by ceramide synthases (LASS) to form 

dihydroceramide.  In the epidermis, LASS3 is the most relevant isozyme, due to its fatty 

acyl-CoA chain length specificity (Stiban et al., 2010).  Dihydroceramide is then 

desaturated by DEGS1/2 or hydroxylated by DEGS2 to form Cer and phytoceramide, 

respectively. In addition to de novo synthesis, salvage synthesis also occurs to form Cer5 

(AS) and Cer2 (NS) via acylation of sphingosine by LASS. Ceramides can also be 

synthesized from FFA that are acylated to sphingoid bases.  FFA synthesis is first 

catalyzed by fatty acid synthase (FASN) in the cytosol.  Fatty acid chain elongation 

occurs in the ER using metabolically-linked enzymes ELOVL 1-7 (condensation), 

hydroxysteroid (17-beta) dehydrogenase (HSD17B, reduction), protein tyrosine 

phosphatase-like, member B (PTPLB, dehydration), trans-2,3-enoyl-CoA reductase 

(TECR, reduction) (Jakobsson et al., 2006).  The initial step of elongation is the rate-

limiting step (Jump, 2009).  Among the ELOVL family of enzymes, ELOVL3 and 

ELOVL6 catalyze the majority of the fatty acids present in the epidermal barrier.  

ELOVL1 and ELOVL 4 catalyze the elongation of the VLCFA present in the ceramides 

of the epidermal barrier (Ohno et al., 2010).  In addition, FFA are hydroxylated to form 

2-OH FFA by FA2H.  Ceramides containing 2-OH FFA include Cer7 (AH), Cer6 (AP) 
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and Cer5 (AS), and are critical for proper formation of the epidermal barrier (Uchida et 

al., 2007). 

Cells in the granular layer are interconnected by a junctional complex including 

tight junctions (TJ), desmosomes, adheren, and gap junctions.  TJ are the most apical 

components in the junctional complex. They seal neighbouring cells together to prevent 

diffusion of solutes through the intercellular spaces.  Components of TJ, e.g. claudin 

(CLDN)1, CLDN4, occludin (OCLN), and tight junction protein 1 (TJP1) are expressed 

throughout the epidermis.  However, the formation of TJ is only found in the apical-most 

layer of the SG (Furuse et al., 2002).  Defects in TJ are observed in patients with AD (De 

Benedetto et al.).  Mice lacking Clnd1 die within 1 day of birth due to tremendous TEWL 

(Furuse et al., 2002), marking CLDN1 a key TJ protein.  A mutation and reduction in 

human CLDN1 has been reported in patients suffered from neonatal ichthyosis-sclerosing 

cholangitis and from AD, respectively (De Benedetto et al.; Hadj-Rabia et al., 2004).  

These studies indicate that tight junctions play a critical role in the permeability barrier 

function of mammalian skin.   

Stratum Corneum 

The stratum corneum is the outermost layer of the epidermis (Figure 2), which has 

been described as the series of bricks (corneocytes) glued by mortar (lipids). Corneocytes 

are terminally differentiated, cornified, flattened, hexagonal-shaped cells that undergo a 

specialized type of cell death leading to loss of the cell nucleus.  They are filled with 

water-retaining keratin proteins surrounded by cornified envelope (CE) and lipids.  The 

insoluble CE structures are formed beneath the plasma membrane of the corneocytes and 

covalently bound to ceramide lipids in order to provide an effective physical and water 



www.manaraa.com

15 
 

barrier function in the skin. CE formation requires deposition of filaggrin (FLG), which 

aggregates the keratin filaments into tight bundles, causing the flattened shape of 

corneocytes.  This formation creates a template or scaffold for the subsequent maturation 

steps of CE assembly.  Besides FLG, a series of other structural proteins including IVL, 

LOR, trichohyalin (THH), and small proline-rich proteins (SPRR) are synthesized and 

then catalytically cross-linked by several TGMs (Candi et al., 2005).  Corneocytes are 

linked one to another by corneodesmosomes, modified desmosomal structures that are 

composed mainly of desmoglein-1 (DSG1), desmocolin-1 (DSC1), and CDSN (Candi et 

al., 2005).  In normal epidermis, the corneocytes are continually shed by the 

physiological process called desquamation to balance the proliferation rate in the basal 

layer, thereby maintaining epidermal homeostasis.  Desquamation requires 

corneodesmosome degradation by several proteolytic enzymes such as SC chymotryptic 

enzyme (SCCE) and the SC tryptic enzyme (SCTE) (Brattsand and Egelrud, 1999; 

Ekholm et al., 2000). 

Corneocytes have the biggest dimensions of all the keratinocytes.  One 

corneocyte is equivalent in area to approximately 25 basal cells (Leigh et al., 1994).  Cell 

size and the number of corneocyte layers vary, depending on the region of the skin, sex, 

and age of the individual (Plewig and Marples, 1970).  For example, there are hundreds 

more of cell layers in the palms and soles than in other skin parts of the body (Leigh et 

al., 1994).  The SC functions as a barrier that protects our body from excessive water 

loss.  The water impermeability of this layer is 1000 times higher than that of other 

membranes of living organisms (Potts and Francoeur, 1991).  
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Nonkeratinocyte Cells of the Epidermis 

In addition to keratinocytes, there are melanocytes, Langerhans, and Merkel cells 

(Figure 2).  Melanocytes migrate into the epidermis from the neural crest early in the 

embryonic development (Holbrook, 1989; Rawles, 1947).  Langerhans cells originate 

from the bone marrow (Stingl et al., 1980).  The origin of the Merkel cells has been 

controversial.  It has been thought that these cells arise from either the skin or neural crest 

lineages, but no definite proof was given.  Recently, Morrisson and colleagues have 

shown that Merkel cells originate from an epidermal lineage, based on mice with a 

conditional knockout of Atoh1 (atonal homolog 1), a transcription factor essential for the 

production of Merkel cells (Maricich et al., 2009; Morrison et al., 2009).  Knocking out 

Atoh1 in the neural crest did not affect the Merkel cell population, whereas loss of Atoh1 

expression in the skin deleted all Merkel cells (Morrison et al., 2009). 

 Melanocytes and Merkel cells are found in the stratum basale, while Langerhans 

cells often appear in the suprabasal layer (Figure 2).  Melanocytes are uniformly 

distributed within the basal layer in a ratio of 1 melanocyte to approximately 10 

keratinocytes.  However, each melanocyte, via its dendrites, supplies melanin to about 36 

nearby keratinocytes (Jimbow et al., 1976).  Human skin and hair color is determined by 

the amount of melanin (eumelanin and pheomelanin, respectively) produced by the 

melanosome, a unique intracytoplasmic organelles of melanocytes (Boissy and Nordlund, 

1996).    

Langerhans cells are dendritic cells and are typically found in the spinous layer of 

the epidermis.  They have dark nuclei and pale or clear cytoplasm.  They contain large 

granules called Birbeck granules, which make them distinguishable from other cell types 
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(Birbeck, 1962).  Langerhans cells are considered to be the primary antigen-presenting 

cell of the skin. They contain antigen markers, human leukocyte antigen (HLA)-D, T4 

antigen, and some of the CD1 antigens that are not expressed by other epidermal cells 

(Ray and Schmitt, 1988).  Compared to keratinocytes, Langerhans cells have been shown 

to be sensitive to the effect of ultraviolet A and B radiation.  A single doses of 60 mJ/cm2 

of UVB spectrum almost completely eliminated all Langerhans cell membrane markers 

(Aberer et al., 1981).  Langerhan cells play an important role in immunogenic and 

tolerogenic aspects of epidermal cells.   

Merkel cells are neuroendocrine cells that are intimately associated with a nerve 

terminal.  They contain small membrane-bound dense-core granules that resemble 

neuroendocrine cells.  The number of Merkel cells in the skin is lower than melanocytes 

and Langerhans cells.  Merkel cells are present at higher density in regions of high touch 

sensitivity such as the palm, buccal mucosa and lips, face and foot (Lacour et al., 1991; 

Moll et al., 1990). 

Factors that Regulate Keratinocyte Growth and Differentiation 

Calcium Ions (Ca2+) 

In vitro, the addition of extracellular Ca2+ mimics the gradient existing in vivo where 

calcium is low in basal and significantly increased in the mid to upper granular toward 

cornified layers (Forslind et al., 1997; Menon et al., 1992).  With concentrations of 

extracellular Ca2+  between 1.2 mM to 2 mM, primary human keratinocytes can establish 

close intercellular contacts, stratify, cornify, and express biochemical markers of 

differentiation such as KRT1, KRT10, IVL, LOR, FLG, and TGM1, resembling those that 

occur in vivo (Dotto, 1999).  After 24 hours in high calcium, more than 95% of 
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keratinocytes are found to be arrested in G1 phase of the cell cycle (Missero et al., 1996), 

whereas more than 50% of the attached cells are reversibly arrested when switched back 

to low calcium containing medium (Topley et al., 1999).  Thus, increased extracellular 

calcium may serve as a primary trigger for keratinocyte differentiation both in vitro and 

in vivo. 

Increasing extracellular calcium to the same level that leads to increased 

differentiation has been shown to increase intracellular calcium (Hennings et al., 1989; 

Yuspa et al., 1989).  This increase in intracellular Ca2+ is thought to happen in two ways.  

Firstly, exogeneous calcium binds the calcium receptor and stimulates non-receptor 

tyrosine kinases, fyn and src, which activates phosphatidylinositol-3-kinase (PI3K) via 

phosphorylation of the PI3K regulatory subunit, p85α, leading to phosphotidylinositol 

3,4,5-triphosphate (PIP3) formation.  PIP3 then binds to and activate phospholipases C 

(PLC)γ1 (Xie et al., 2005), which increases diacylglycerol (DAG), an endogenous protein 

kinase C (PKC) activator (Jaken and Yuspa, 1988), and inositol triphosphate (IP3) 

production.  IP3 then binds to IP3 receptors in the Golgi and endoplasmic reticulum (ER), 

releasing intracellular Ca2+ and hence triggering keratinocyte differentiation (Bikle et al., 

1996; Xie et al., 2005).  Secondly, the increase in extracellular calcium results in calcium 

influx through calcium-gated chloride channels, causing Cl- to exit the cells, which 

results in a depolarization of the plasma membrane.  This depolarization leads to the 

opening of voltage gated calcium channels, allowing influx of calcium from the external 

environment (Reiss et al., 1991).  A rising level of intracellular calcium causes genomic 

and nongenomic effects, such as a redistribution of desmoplakin to the membrane (Watt 
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et al., 1984), increases in IVL, LOR, and TGM1 protein within hours (Rice and Green, 

1979), and increased cornification at 1-2 days (Pillai et al., 1990).  

Confluent Cell Density 

Confluent cell density of keratinocytes in culture has been shown to strongly induce 

commitment to terminal differentiation (Lee et al., 1998; Poumay and Pittelkow, 1995).  

In normal human epidermis, keratinocytes undergo constant renewal, during which stem 

cells in the basal layer of the epidermis replace keratinocytes that are constantly lost or 

shred off during terminal differentiation.  The differentiation process is initiated when 

stem cells are replaced by transit amplifying cells (Watt et al., 2006), which are in 

equilibrium with cells that have withdrawn reversibly and irreversibly from the cell cycle 

to commit to terminal differentiation (Okuyama et al., 2004).  At cell confluence, a large 

majority of proliferative keratinocytes rapidly undergo irreversible growth arrest, as 

demonstrated by a dramatic loss of keratinocyte clonogenicity (Poumay and Pittelkow, 

1995).  Cell density induces expression of multiple keratinocyte differentiation markers 

such as SPRR1, KRT1, IVL, LOR, FLG, and TGM1, independent of extracellular Ca2+ 

concentration of the medium (Lee et al., 1998; Poumay and Pittelkow, 1995).  In NHEK 

cultures, density-mediated keratinocyte differentiation is associated with activation of 

PKCα, as demonstrated by its translocation to the particulate fraction, and the blockage of 

keratinocyte differentiation markers by the inhibition of this PKC isoform activation (Lee 

et al., 1998).   

Kolly and colleagues have demonstrated that confluency plays an key role in 

driving proliferating keratinocytes into terminal differentiation by studying the effect of 

confluency at low (up to 0.9 mM) and high (1.2 and 1.8 mM) calcium (Kolly et al., 2005).  
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When keratinocytes reach confluency, they are contact inhibited.  As cells are contact 

inhibited, Notch1 is activated by the binding of Delta1 or Jagged, Notch1 ligands 

expressed on neighboring cells (Kolly et al., 2005; Mumm and Kopan, 2000).  Notch1 is 

a key determinant of keratinocyte growth arrest and differentiation.  Activation of Notch1 

causes growth suppression by inducing p21WAF1/Cip1 expression (Rangarajan et al., 2001), 

one of the earliest cell cycle regulatory events essential for keratinocyte terminal 

differentiation (Missero et al., 1996).  At confluence, c-Myc is also inhibited (Kolly et al., 

2005).  The protooncogene c-Myc plays a key role in promoting the exit of stem cells 

into the transit amplifying compartment (Arnold and Watt, 2001).  Low levels of c-Myc 

expression are required for transit amplifying cells to commit to terminal differentiation 

(Waikel et al., 1999).  These results indicate that confluency, independent of calcium 

concentration, is a key regulator of keratinocyte proliferation and terminal differentiation. 

Cell-cell Adhesions 

Control of cell-cell contact has been shown to play an inherent role in the regulation 

of skin cell differentiation (Charest et al., 2009; Hines et al., 1999; Owens et al., 2000).  

With the formation of cell-cell contacts, the cells begin to stratify to generate multiple 

epidermal layers, with the basal-like cells remaining attached to the dermis while the 

more differentiated cells forming the suprabasal layers (Hennings et al., 1989). 

Differentiating keratinocytes develop cell-cell junctions through various transmembrane 

proteins, such as E-cadherin and P-cadherin.  In vivo, loss of E-cadherin in keratinocytes 

leads to down-regulation of markers of differentiation (Young et al., 2003b).  In vitro 

human keratinocytes, blocking E-cadherin activity with antibodies leads to abnormal 

stratification and delayed localization of junction proteins (Wheelock and Jensen, 1992).  
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Blocking the function of both E-cadherin and P-cadherin with antibodies prevents the 

induction of differentiation markers such as TGM1, LOR, and proFLG proteins in vitro;  

however inhibition of only E-cadherin increases protein levels of LOR and proFLG 

(Hines et al., 1999), indicating that cell-cell contact affects differentiation through 

multiple junction proteins.  Charest and colleagues demonstrated that cadherin-mediated 

cell-cell contact regulates keratinocyte differentiation by using a micropatterned surfaces 

in vitro cell model, which provides a controlled and simple strategy to inhibit or permit 

cell-cell contact between isolated pairs of cells while controlling cell spreading, shape, 

and density (Charest et al., 2009).  Micropatterned surfaces are microcontact printing of 

self-assembled monolayers of alkanethiolates on gold.  These surfaces are printed with 

bowtie patterns using a polydimethylsiloxane stamp.  Each bowtie has 15 distinct fields, 

each with several hundred replicates and is coated with the extracellular matrix protein 

fibronectin (Charest et al., 2009). 

Biology and Structure of EGF 

EGF was first described by Cohen in the 1960s.  The protein was isolated from 

murine submaxillary glands and caused tooth eruption and premature eyelid opening in 

new-born mice (Cohen, 1962).  It was named epidermal growth factor after the 

observation that its direct addition to organ cultures of chick embryonic skin led to a 

significant increase in epidermal cell number and size (Cohen, 1965).  It is a small 

peptide (6045 Da) that produces a variety of biological responses, including promotion of 

proliferation and differentiation of skin tissue (Cohen and Carpenter, 1975), corneal 

epithelial tissue (Savage and Cohen, 1973), lung and tracheal epithelia (Catterton et al., 

1979); potentiation of 3-methylcholanthrene carcinogenesis (Reynolds et al., 1965); 
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phosphorylation of nuclear proteins (Huff and Guroff, 1978); formation of fatty liver 

(Heimberg et al., 1965); and inhibition of gastric acid secretion (Bower et al., 1975).  In 

humans, EGF has been found in many body fluids such as urine, saliva, breast milk, 

amniotic fluids, and plasma (Carpenter, 1980b).  It is a major growth-promoting agent in 

human milk (Carpenter, 1980a).  The human equivalent of mouse EGF is urogastrone, a 

hormone that inhibits gastric acid secretion (Gregory, 1975).  In cultured cells and 

tissues, exogenous EGF has multiple functions.  Some of the functions include activation 

of glycolysis (Diamond et al., 1978; Schneider et al., 1978), phosphorylation of nuclear 

protein (Huff and Guroff, 1978), stimulation of macromolecular (hyaluronic acid, RNA, 

protein, DNA) synthesis (Cohen and Stastny, 1968; Hoober and Cohen, 1967; Lembach, 

1976), enhanced cell proliferation (Gospodarowicz et al., 1977; Hollenberg, 1975), and 

alteration of viral growth (Knox et al., 1978).  

EGF consists of 53 amino acid residues.  In humans, EGF is translated from a gene 

that is located on chromosome 4.  This gene contains 24 exons separated by large non-

coding regions (Bell et al., 1986; Savage et al., 1972).  The precursor of EGF has 1207 

amino acids which are translated from a 4.8 kb mRNA.  This mRNA is spliced from an 

initial transcript of approximately 110 kb (Bell et al., 1986).  The EGF precursor contains 

a hydrophobic domain, assumed to be required for anchoring the protein to the membrane 

(Rall et al., 1985), and 7 EGF-like domains (Gray et al., 1983) with unknown functions.  

The tertiary structure of EGF is non-glycosylated and stabilized by three intramolecular 

disulfide bonds that are the characteristic for EGF and EGF-like growth factors and also 

required for its biological activity (Savage et al., 1973; Taylor et al., 1972).    
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Structure and Function of the Human EGF Receptor 

EGF exerts its function via EGF receptors (EGFRs).  The EGFR (ErbB1 or Her1) is 

a 170-kDa transmembrane glycoprotein.  It belongs to the ErbB family, which contains 

four related receptor tyrosine kinases: EGFR (ErbB1, Her1), ErbB2 (Her2), ErbB3 (Her3), 

and ErbB4 (Her4).  The EGFR and ErbB2 are the most closely related with 49% identity 

(64% similarity) and EGFR/ErbB3 being the furthest from one another with 37% identity 

(53% similarity) (Jorissen et al., 2003). 

The extracellular domain (or ectodomain) of the EGFR contains the amino terminus 

with 62 amino acid residues, two ligand binding (L1 and L2) and two cysteine-rich 

domains (CR1 and CR2) (Figure 4) (Carpenter and Zendegui, 1986).  EGF binds to the 

L1 and L2 regions (Garrett et al., 2002; Ogiso et al., 2002).  The hydrophobic domain of 

the EGFR was originally identified by hydrophobicity analysis of the EGFR sequence.  

This region contains 23 amino acid residues that span the membrane (Ullrich et al., 

 

Figure 4. Architecture of the Epidermal Growth Factor Receptor 
The extracellular domain contains the two ligand binding (L1 and L2) and two 
cysteine-rich domains (CR1 and CR2).  The cytosolic domain contains juxtamembrane, 
kinase, and actin binding domains. Adapted from (Carpenter and Zendegui, 1986; 
Garrett et al., 2002). 
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1984).  However, nuclear magnetic resonance analysis of the EGFR transmembrane 

peptide and the beginning of the cytoplasmic domain indicated that the transmembrane 

domain is α- helical and expands to the juxtamembrane domain (Rigby et al., 1998).  The 

juxtamembrane region has multiple regulatory functions including downregulation and  

internalization of ligand-receptor complexes (Kil and Carlin, 2000), basolateral sorting of 

the EGFR in polarized cells (He et al., 2002), and direct binding with proteins such as 

EGFR  kinase substrate (EPS8) (Castagnino et al., 1995) and calmodulin (Li and 

Villalobo, 2002; Martin-Nieto and Villalobo, 1998).  Continuing into the cytosol is the 

highly conserved tyrosine kinase domain of the EGFR.  The three-dimensional structure 

of the EGF kinase domain is similar to other tyrosine kinases.  The ATP binding region is 

located between the N-terminal region and the larger C-terminal region.  The carboxy 

terminus of the EGFR is composed of 542 amino acid residues.  The C-terminal domain 

contains tyrosine residues that can be phosphorylated by the receptor itself (Downward et 

al., 1984). This autophosphorylation modulates EGFR-mediated signal transduction.  

Phosphorylation at serine/threonine residues on the kinase domain has been suggested to 

be important for the downregulation and endocytosis processes of the receptor (Zwang 

and Yarden, 2006).  The C-terminal domain also contains a binding site for actin (den 

Hartigh et al., 1992) which is believed to play a role in  the formation of higher order 

receptor oligomers and/or receptor clustering after phosphorylation. 

Signal Transduction 

In the absence of ligand binding, EGFRs exist in monomeric and dimeric forms, but 

both are inactive (Yu et al., 2002).  When ligands such as EGF bind, there is a change in 

the conformation of the receptor that reorients the intracellular domains to form a 
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structure having an active kinase (Moriki et al., 2001).  This configuration allows the 

tyrosine kinase domains of the two ligand-bound monomers to transphosphorylate each 

other.  Tyrosine phosphorylation serves as the first and crucial step in the EGFR-

mediated signal transduction. 

Different ligands and combinations of homo- and heterodimerizations within the 

EGFR family lead to a diverse set of signaling events.  Some basic features of EGFR 

signal transduction can be summarized as follows.  Upon ligand binding, receptor 

dimerization occurs, leading to autophosphorylation of distinct tyrosine residues.  This 

autophosphorylation creates docking sites for various cytoplasmic adaptor proteins and 

enzymes with SH2 (Src homology 2) and PTB (phosphotyrosine binding) domains.  The 

SH2 domain binds specifically to the residues located downstream of the EGFR 

phosphotyrosine (pY) while PTB binds to the residues located upstream of the pY.  

Docking proteins are important to receptor tyrosine kinases as they recruit signaling 

molecules to the receptors, regulating variety of cellular responses (Figure 5). 

Activation of the Mitogen-activated Protein Kinase (MAPK) Cascade 

The MAPK cascade includes four major groups of MAP kinases including 

extracellular regulated kinases (ERKs) 1 and 2, jun N-terminal kinases (JNKs), p38, and 

the extracellular signal regulated kinase-5 (ERK5) (Kyriakis and Avruch, 2001).  These 

serine/threonine kinases are evolutionarily conserved in all eukaryotes (Garrington and 

Johnson, 1999).  Signaling through ERK1/2 is the best characterized pathway among 

other MAPK pathways.  The first biochemical event in this cascade is the activation of 

the proto-oncogene Ras.  Ras is activated by a guanine nucleotide exchange factor, Sos.  

In this cascading event, the adaptor protein Grb2 is a key component of EGFR signaling  



www.manaraa.com

26 
 

to Ras (Lowenstein et al., 1992).  Grb2 forms a complex with Sos through its SH3 

domain.  The Grb2/Sos complex binds to the tyrosine phosphorylated EGFR via the SH2 

domain in Grb2, thus recruiting Sos to the plasma membrane where it stimulates the 

exchange of GDP for GTP for Ras. Ras-GTP binds to and activate the serine/threonine 

kinase Raf-1 and subsequently the activation of the dual specificity kinase MEK1/2 

(Hallberg et al., 1994).  This in turn leads to the phosphorylation and activation of ERK1 

and ERK2, allowing them to translocate to the nucleus where they catalyze the  

 
 
Figure 5. EGFR Signal Transduction  
Activation of the EGFR leads to a number of serine/threonine cascades.  This includes 
the MAPK, PI3K, and PLCγ signaling pathways, producing diverse cellular responses 
such as proliferation, differentiation, motility, and apoptosis. Adapted from (Davis, 
2000; Garrington and Johnson, 1999; Johnson and Vaillancourt, 1994; Kyriakis and 
Avruch, 2001; Prenzel et al., 2001). Arrow indicates activation. Flat head line 
indicates inhibition. Chemicals known to inhibit PKC, PI3K, P38, and MEK1/2 are 
Gö6983, wortmannin, SB203580, and U0126, respectively. 
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phosphorylation of nuclear transcription factors such as Elk1, cFos (Prenzel et al., 2001), 

cJun, cMyc, and NFκB.  Sos can also be recruited to the plasma membrane by binding of 

Grb2/Sos to Shc, another adaptor protein with SH2 and PTB domains (Margolis, 1999).  

These signaling cascades regulate diverse cellular responses such as proliferation, 

differentiation, motility, and apoptosis (Davis, 2000; Johnson and Vaillancourt, 1994).  

Signaling through the JNK and p38 stress-activated kinases is less well 

understood than for ERK1/2.  EGF activates JNK via the small GTP-binding proteins 

Rac1 and Cdc42 (Coso et al., 1995; Minden et al., 1995).  The adaptor Crk protein has 

been shown to be critical for JNK activation following EGF treatment of Crk-transfected 

COS7 cells (Dolfi et al., 1998).   JNK activity is not detected in healthy human epidermis, 

but is elevated in psoriasis (Takahashi et al., 2002).  In cultures of keratinocytes, JNK 

activation has been shown to be associated with epidermal proliferation (Zhang et al., 

2004), while inhibition of JNK promotes differentiation of epidermal keratinocytes 

(Gazel et al., 2006).  The activation of the p38 pathway is required for the migration of 

cultured human keratinocytes on dermal collagen (Li et al., 2001), and for the 

downregulation of EGFR, explaining its role in the regulation of EGF-stimulated 

epithelial wound healing and proliferation (Frey et al., 2006). 

Activation of Phosphotidylinositol-3-kinase (PI3K) 

EGF activates the lipid kinase PI3K, which consists of a p85 regulatory domain and a 

p110 catalytic domain.  The activation of PI3K by EGF is relatively weak compared to 

other receptor tyrosine kinases since EGFR does not have a binding sites for the SH2 

domain of PI3K (Soltoff et al., 1994).  The EGFR activates PI3K via the adaptor protein 

Gab1.  PI3K activation leads to membrane recruitment and activation of the 
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serine/threonine kinase PDK1.  Subsequently, protein kinase B (PKB/Akt) is 

phosphorylated (Prenzel et al., 2001).  These cascading events stimulate a variety of 

cellular responses.  It has been shown that activation of PKB leads to phosphorylation 

and inactivation of BAD, preventing apoptotic cell death by inhibiting its formation with 

the apoptotic proteins Bcl-2 and Bcl-xl (Datta et al., 1999).  PKB can also inhibit 

apoptosis by phosphorylating the transcription factor FKHR1, suppressing proapoptotic 

gene expression (Brunet et al., 1999).  PDK1 and PKB have been suggested to play a role 

in the control of protein synthesis, gluconeogenesis and glycolysis in response to insulin 

stimulation through phosphorylation of the S6 kinase, glycogen synthase kinase-3 (GSK3) 

and phosphofructokinase (Toker and Newton, 2000).  Activation of PI3K also results in 

activation of mammalian target of rapamycin (mTOR) and the p70 S6 kinase (S6K). This 

signaling cascade controls the expression of several genes that involved in cell growth 

and survival (Heinonen et al., 2008). 

Activation of Phospholipase C (PLC) 

EGF activates the autophosphorylation of the EGFR, providing the docking site for 

the SH2 domain of PLCγ (Jorissen et al., 2003).  PLCγ is recruited to the plasma 

membrane and is tyrosine phosphorylated and activated by the EGFR.  Activated PLCγ 

hydrolizes the phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)IP2) substrate to form 

two second messengers, 1,2-diacylglycerol (DAG) and inositol 1,3,5-trisphosphate (IP3).  

IP3 mediates the release of Ca2+ from intracellular stores.  Ca2+  binds to calmodulin, 

activating a family of Ca2+/calmodulin-dependent protein kinases.  Both Ca2+ and DAG 

activate members of the serine/threonine kinase PKC.  Activation of certain PKC 

isoforms alters the growth and differentiation of human epidermal keratinocytes (Szegedi 
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et al., 2009).  Specifically, PKCα activation is required and sufficient to trigger 

irreversible growth arrest during human keratinocyte differentiation (Jerome-Morais et al., 

2009). 

EGFR and Keratinocyte Differentiation 

Epidermal development is tightly regulated by cytokines and growth factors (Fuchs 

and Raghavan, 2002).  These molecules provide spatial and temporal signaling that 

controls keratinocyte proliferation, differentiation, migration, and finally, terminal 

differentiation and cornification.  TGF-α and EGF are related growth factors that activate 

EGFR to regulate growth and differentiation in epidermal keratinocytes (Schneider et al., 

2008).  Dysregulation of EGFR signaling results in abnormal “wavy hair” and “curly 

whiskers” phenotypes of spontaneous loss-of-function mutations in the mouse TGF-α 

gene (named waved-1 or wa1) or in the EGFR (named wave-2 or wa2), repectively 

(Mann et al., 1993; Threadgill et al., 1995).  Depending on the genetic background of the 

mice, complete loss of the EGFR can cause death at embryonic or mid-gestation stage, or 

after a few weeks of postnatal life (Sibilia and Wagner, 1995; Threadgill et al., 1995).  

Mice lacking ERBB2, ERBB3, or ERBB4 die during embryonic development (Gassmann 

et al., 1995; Lee et al., 1995; Riethmacher et al., 1997).  Abnormally high levels of EGFR 

activities cause a hairless phenotype and skin cancers (Ferby et al., 2006).   

In keratinocyte cultures, EGFR signaling is known to have an inhibitory effect on 

multiple pro-differentiation signals and down-regulates the expression of both early and 

late differentiation markers, as well as inhibits the formation of cornified envelope (CE) 

(Sun and Green, 1976).  In keratinocyte cultures containing growing colonies, the 

percentage of cornified cells is reduced in the presence of EGF compared to that of 
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untreated cells (Sun and Green, 1976).  Keratinocytes undergoing differentiation first 

enter reversible cell cycle withdrawal and then irreversible cell cycle withdrawal.  During 

this process, many differentiation-specific proteins are expressed (Poumay and Pittelkow, 

1995).  Early differentiation markers such as KRT1 and KRT10 are induced in cells that 

undergo differentiation.  The induction of these genes is suppressed by the addition of 

EGF to the culture medium (Poumay and Pittelkow, 1995).  A study has shown that the 

suppression of KRT1 by EGF is due to the repression of Notch1 expression, an important 

regulator of cell fate decisions in the epidermis (Kolev et al., 2008).   EGF also 

moderately reduces activity of TGM1 and inhibits late markers of differentiation such as 

FLG (Marchese et al., 1990; Monzon et al., 1996).  Organotypic cultures grown at 33ºC 

in the presence of EGF exhibit no LOR expression and abnormal expression of SPRR2 

and SPRR3 (Gibbs et al., 1998).  Inhibition of the EGFR with neutralizing antibodies or 

EGFR tyrosine kinase inhibitors diminishes the effects of EGF and promotes terminal 

differentiation (Hashimoto, 2000; Jost et al., 2000; Peus et al., 1997; Sutter et al., 2009). 

These reports convincingly demonstrate an important function of EGFR in the regulation 

of keratinocyte proliferation and differentiation.  However, only two reports have shed 

new light into the molecular mechanisms by which EGFR signaling determines 

epidermal keratinocyte cell fate.  In the first study, EGFR/ERK signaling was identified 

as a negative regulator of the expression of Notch 1, whose signaling promotes 

keratinocyte differentiation by down-regulating the expression of p53.  The 

transcriptional suppression of p53 was shown to be involved by the EGFR effector c-Jun 

(Kolev et al., 2008).  The second study, using an organotypic raft model, identified DSG1 

as a suppressor of EGFR signaling.  DSG1 is required to suppress the sustained 
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activation of EGFR/ERK signaling in the granular layer and acts together with other 

desmosomal proteins such as DSG2 and DSC3 to support a signaling network that 

balances keratinocyte proliferation and differentiation to maintain epidermal tissue 

homeostasis (Getsios et al., 2009).  These studies have demonstrated that epidermal 

homeostasis is regulated spatiotemporally, in part, by EGFR signaling. 

The EGFR in Dermatological Diseases 

Defective epidermal differentiation and disrupted skin barrier are primary features of 

many human skin diseases such as psoriasis, allergic contact dermatitis, and atopic 

dermatitis.  Common characteristics among these diseases are epidermal hyperplasia and 

abnormalities in expression of the EGFR and its ligands.  In normal skin, the EGFR is 

expressed throughout the entire epidermis, but is more concentrated at the basal cell layer 

(Nanney et al., 1984).  In psoriasis vulgaris, the level of EGFR expression is increased 

two- to four-fold in active lesions, and the EGFR are persistently expressed in the stratum 

spinosum and stratum corneum (Sporn et al., 1987).  In addition, EGFR ligands such as 

TGF-α (Pastore et al., 2005) and amphiregulin (Chokki et al., 2006) are released in the 

psoriatic lesions, upregulating the expression of interleukin (IL)-8, a cytokine whose 

induction serves as a secondary amplification mechanism leading to epidermal 

hyperplasia (Reich et al., 2001).  IL-8 can contribute to the activation of the 

metalloprotease-dependent release of EGFR ligands by acting on its specific G-protein-

couple receptor (Tanida et al., 2004).  In lesional skin of atopic dermatitis (AD) and 

allergic contact dermatitis, the expression of the EGFR prominently extends to the 

suprabasal layers.  TGF-α is stained quite faintly in basal keratinocytes of normal skin.  

On the other hand, TGF-α is detected clearly throughout the basal and suprabasal 
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keratinocyte layers in patients with psoriasis, AD, and allergic contact dermatitis (Mascia 

et al., 2003).  High levels of EGFR are also present in seborrheic keratoses and 

acrochodons of patients with dysplastic nevus syndrome who are pregnant or taking sex 

steroid hormones (Ellis et al., 1990).  Seborrheic keratoses and acrochodons (skin tags) 

are characterized histologically by hyperkeratosis, epidermal acanthosis, and 

papillomatosis (Lever and Schaumburg-Lever, 1990).  This increase is thought to be due 

to the increased EGF and estrogen levels, as seen in pregnancy (Ellis et al., 1990).  EGFR 

distribution is also affected in the viral diseases of skin.  The level of EGFR is decreased 

and abnormally distributed in verruca vulgaris  as well as in molluscum contagiosum, a 

pox virus (Nanney et al., 1988).  Further, elevated mRNA and protein levels of the EGFR 

are observed in cancers derived from epidermal cells, such as melanomas (de Wit et al., 

1992; Derynck et al., 1987).  In keratinocyte cancer cell lines and tumors, NOTCH1 gene 

expression and activity are significantly reduced.  EGFR signaling has been identified to 

play an essential role in the negative regulation of NOTCH1 gene transcription in normal 

human keratinocytes and cancer cells (Kolev et al., 2008).  In cancer cells, inhibition of 

EGFR signaling induces NOTCH1 gene expression through p53.  Suppression of Notch 

signaling by EGF may lead to apoptosis (Kolev et al., 2008).  These findings have 

emphasized the importance of the EGFR as targets of cancer therapy and skin diseases. 

 Because the EGFR plays a critical role in cancer progression, wound healing, and 

skin inflammatory diseases, anti-EGFR therapies have been introduced as treatment 

options.  Currently, anti-EGFR monoclonal antibody (cetuximab) and EGFR tyrosine 

kinase inhibitors (gefitinib and erlotinib) have been approved for patients with colorectal 

and non-small-cell lung cancer.  However, a common adverse effect of these agents is 
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pustular or aceneiform eruption which can be severe enough to lead to treatment 

modification or cessation (Agero et al., 2006; Perez-Soler et al., 2005).  It has been 

suggested by many clinical trials that these skin lesions or rashes are an indicator of 

effective target inhibition and activity of EGFR-targeted agents (Perez-Soler and Saltz, 

2005).  The lesions may also be derived from the impairment of many EGFR-dependent 

homeostatic functions of the skin (Lacouture, 2006).  These observations strongly suggest 

that chronically reduced activity of EGFR in skin may not be an appropriate treatment for 

inflammatory disorders associated with epithelial hyperproliferation. 

Specific Research Objectives 

Aim 1: Determine the Role of the EGFR in Epidermal Barrier Function 

EGFR signaling is an essential regulator of fundamental functions in mammalian 

cells including proliferation, migration and survival (Jost et al., 2000; Pastore et al., 

2008).  Molecular events driven by EGFRs to mediate both proliferation and migration in 

human epidermal keratinocyte have been extensively studied using both experimental and 

computational approaches (Citri and Yarden, 2006; Pastore et al., 2008).  However, little  

is known about EGFR-dependent mechanism on keratinocyte differentiation.  Using 

NHEK cultured in serum-free medium to investigate the effect of different 

pharmacologic and physiologic factors on keratinocyte proliferation and differentiation 

reveals that proliferation and differentiation are controlled in an integrated manner 

(Wilke et al., 1988; Wille et al., 1984).  Subsequent studies aiming to establish the 

molecular mechanisms underlying this effect have identified confluent cell density as a 

primary biological mechanism that regulates keratinocyte commitment to terminal 

differentiation and differentiated gene expression (Poumay and Pittelkow, 1995).  Later 
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studies using gene expression profiles by microarray have identified large sets of 

differentiation-related genes in keratinocytes subjected to confluence-induced 

differentiation (Paragh et al., 2010).  Although EGFR activation is known to regulate the 

expression of a few of these differentiation-related genes (Gibbs et al., 1998; Marchese et 

al., 1990; Monzon et al., 1996; Poumay and Pittelkow, 1995), its role in regulating gene 

expression at a genome-wide level has not yet been studied.  Furthermore, using the 

confluence-induced differentiation model, we showed recently that in addition to 

blocking the expression of cornified envelope precursor genes, EGF also suppressed the 

expression of critical genes in the sphingolipid and ceramide biosynthetic pathway 

(Sutter et al., 2009).  Specifically, EGF inhibits the expression of genes such as FLG, 

UDP-glucose ceramide glucosyltransferase (UGCG), and sphingolipid delta(4)-

desaturase (DEGS2),  that are involved in the cornification and epidermal barrier function 

of the skin (Sutter et al., 2009).  Because lipid biosynthesis is essential for maintenance of 

the epidermal barrier (Holleran et al., 2006), we performed further studies to identify 

differentiation associated metabolic processes that are regulated by EGFR signaling.       

We combined genome-wide microarray and functional analyses to explore the effects 

of EGF, a ligand of the EGFR, on normal human epidermal keratinocytes undergoing 

density-induced differentiation.  We identified 2,676 density-dependent EGF-regulated 

genes.  Contrary to the effects of density, EGF downregulated the expression of 91% of 

the density-upregulated genes and upregulated 96% of the density-downregulated genes, 

suggesting that EGF plays a critical role in inhibiting keratinocyte differentiation. 

Specifically, EGF significantly reduced free fatty acid synthesis by half, suppressing the 

expression of ELOVL4, PTPLB and TECR, enzymes that form stearic acid and oleic acid, 
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two major fatty acid components in the SC. EGF also inhibited mRNA levels of genes 

encoding enzymes in the de novo and salvage ceramide pathways, causing a decrease in 

ceramides 1, 3, 6, 7, 8, as well as the acyl-glucosylceramides. Our expression and protein 

results strongly suggest that activation of EGFR signaling inhibits cornified envelope 

formation by altering levels of enzymes and structural proteins essential for the synthesis 

of this differentiated structure. Further, we showed that EGF caused a significant 

reduction in levels of tight junction proteins such as CLDN1 and TJP1, leading to an 

increase in paracellular permeability and disruption of tight junction barrier function. 

EGF impaired the epidermal barrier integrity as a whole by increasing the transepidermal 

water loss in organotypic culture.  Finally, bioinformatics and statistical analyses 

revealed that genes associated with skin diseases were enriched in the set of EGF-

regulated genes. Our work advances the current understanding of EGFR signaling in 

regulating epidermal barrier function. We identified many new EGFR-regulated genes 

and, more importantly, connected the function of these genes to major processes involved 

in epidermal differentiation. These findings provide a reference for subsequent studies of 

EGFR in the regulation of epidermal cell fate and homeostasis and may lead to novel 

therapeutic approaches for the treatment of dermatological diseases.  

Aim 2: Identify the EGFR Signaling Pathway(s) that Mediate(s) Its Identified 

Effects on Epidermal Barrier Function 

In normal human epidermis, keratinocytes undergo ongoing renewal by a process 

called homeostasis, during which stem cells in the basal layer of the epidermis replace the 

keratinocytes that are constantly lost or shed during terminal differentiation.  A model of 

epidermal homeostasis has been proposed and modified with rate constants to 
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demonstrate that the number of stem cells is determined by the surrounding transit 

amplifying cells.  The transit amplifying cells are in turn in equilibrium with cells that 

have withdrawn reversibly from the cell cycle and can commit to terminal differentiation 

by withdrawing irreversibly from the cell cycle (Figure 6) (Okuyama et al., 2004; Wilke 

et al., 1988).  This dynamic model, together with our previous observations that EGFR 

signaling affects keratinocyte cell fate by regulating the expression levels of genes 

responsible for the basal and suprabasal phenotypes, has led us to hypothesize that EGF 

not only affects the essential processes required for epidermal barrier performance, but 

also the transition between growth arrested reversible cells and transit amplifying cells (k-

2), by inhibiting and inducing the transcription factors (TFs) that regulate differentiation 

and proliferation, respectively.  Our next aim is to understand the gene regulatory 

networks that control the homeostatic effects of EGF.  Identifying regulatory networks 

and mapping TFs with their targets is a central problem and an ultimate goal in 

understanding the underlying mechanisms of cellular responses such as growth control 

and cell-cycle progression.  Transcription factors are mediators that determine when and 

which genes are to be expressed.  Understanding the factors that regulate the expression 

 
Figure 6. Dynamic Model of Keratinocyte Stem Cell Renewal and Differentiation 
(Okuyama et al., 2004) 
This model shows a dynamic equilibrium between proliferative and terminal 
differentiated keratinocytes. The number of stem cells is determined by the surrounding 
transit amplifying cells which are in turn in equilibrium with cells that have withdrawn 
reversibly from the cell cycle and can commit to terminal differentiation by withdrawing 
irreversibly from the cell cycle. 
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of downstream target genes provides insight into the mis-regulated gene expression that 

is found in many human diseases.    

To accomplish this task, we performed a time course microarray experiment.  In this 

experiment, we had time-matched controls for each time point in order to identify the 

effects of EGF on gene expression over time.  The data analysis revealed that EGF 

determined keratinocyte cell fate through a complex transcriptional regulatory network.  

After controlling for false discovery rate at 1%, EGF temporally changed the mRNA 

levels of 3,033 genes.  Among these genes, we identified 245 TFs that were significantly 

changed by EGF.  Specifically, we found that EGF controlled keratinocyte homeostasis 

by inhibiting the expression of pro-differentiation TFs and keratinocyte differentiation 

markers, while inducing the gene expression of proliferation transcription factors and 

proliferative markers.  We also observed that MEK signaling pathway appeared to be the 

dominating pathway that was activated by EGF in epidermal keratinocyte.  EGF signaled 

primarily through MEK and PKC signaling pathways to inhibit TFs that promote 

differentiation and induced those that promote proliferation primarily through MEK and 

PKC signaling pathways. When MEK signaling pathway was not involved, PKC 

signaling pathway appeared to mediate the up-regulation of some keratinocyte pro-

differentiation TFs expression. 

In summary, these findings provide a new mechanistic understanding of how EGFR 

activation controls gene expression at genome-wide level and uses signal transduction to 

repress keratinocyte differentiation and impair the epidermal barrier integrity, as well as 

shed light on the role of EGFR imbalance in skin pathogenesis. 
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MATERIALS AND METHODS 

Keratinocyte Cell Cultures 

Microarray 1 

Neonatal foreskin NHEKs (Lonza Walkersville Inc.) were grown in basal 

keratinocyte-SFM (KSFM) (Invitrogen) supplemented with 5 ng/ml EGF and 50 µg/ml 

bovine pituitary extract (BPE). Fifth-passage NHEKs were grown to either 50% or 100% 

confluent cell density before treatment with basal medium, or medium containing EGF 

(10 ng/ml) or TGF-α (50 ng/ml) for 48 hr, with the treatment medium being replaced 

once at 24 hr (Sutter et al., 2009). 

Microarray 2 

Neonatal foreskin NHEKs were grown in the same condition as above.  Fifth-

passage NHEKs were grown to 100% confluent cell density.  Cultures were treated with 

+/-EGF (10 ng/ml) after 48 hours of the last addition of complete medium.  RNAs were 

then harvested at 1, 2, 4, 8, 16, and 24 hours after this initial treatment +/- EGF. The zero 

time (t0) point controls were changed to basal medium, and RNAs were immediately 

harvested.  For statistical analysis, there were 3 replicates at each time point. In order to 

control for variation in plating, cells were pooled from two individual plates before 

harvesting RNA. 

RNA Extraction and cDNA Microarray 

Microarray 1 

Total RNA was isolated using RNA Stat-60 (Tel-Test).  The mRNA levels were 

measured using the Affymetrix Human Gene 1.0 ST arrays according to the standard 

GeneChip® Whole Transcript Sense Target Labeling assay manual.    Arrays were 
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washed and stained in the Affymetrix Fluidics Station 400.  After hybridization, the 

arrays were scanned using the Affymetrix GeneChip Scanner 3000 7G. The microarray 

data have been submitted to the National Center for Biotechnology Information (NCBI) 

Gene Expression Omnibus repository (GSE32217). 

Microarray 2 

Total RNA was isolated using RNA Stat-60 (Tel-Test).  The mRNA levels were 

measured using the Affymetrix Human Genome U133 Plus 2.0 arrays according to the 

standard GeneChip® Expression assay protocol.   Biotinylated cRNAs were prepared 

according to the standard Affymetrix protocol from 8 ug of total RNA (Enzo BioArray 

High Yield RNA Transcript Labeling Kit). Following fragmentation, 20 ug of cRNA 

were hybridized for 16 hr at 45ºC.  Arrays were washed and stained as described above.  

Array Data and Statistical Analysis 

Microarray 1 

The 16 Human Gene 1.0 ST arrays were preprocessed using dChip (Li and Hung 

Wong, 2001).  Genes with at least 1.5 fold difference when comparing the 100% cell 

density untreated samples to the 50% cell density untreated samples were exported for 

further analysis.  Two-way ANOVA was used to identify differentially expressed genes 

by either density or treatment factors using JMP Genomics 4.1 (SAS, Cary, NC).  The 

multiple hypothesis problem was corrected by Benjamini-Hochberg false discovery rate 

control at the 0.05 level (Benjamini and Hochberg, 1995).  Pair-wise comparisons were 

performed using the Tukey’s Honestly Significant Difference test. 

The 1,083 genes that are associated with the epidermis in the literature were 

identified using GeneIndexer (Homayouni et al., 2005).  The keywords used for this 
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analysis were epidermal differentiation, epidermal barrier, skin, cornified envelope, 

keratinocyte, and epidermis, with a 0.1 score cut off.  GeneIndexer utilizes Latent 

Semantic Indexing, a vector space model for information retrieval, to identify both 

explicit and implicit gene-to-keyword associations contained within titles and abstracts in 

Medline citations (Homayouni et al., 2005).  Functional Annotation Clustering from 

DAVID (htt://david.abcc.ncifcrf.gov/) was used to obtain the 72 highly enriched genes 

associated with ectoderm development.  Biological process and cellular component 

categories were extracted from the DAVID analysis results.  Genes related to skin 

diseases were generated by combining the results obtained from Chilibot (Chen and 

Sharp, 2004) and IPA (Ingenuity® Systems, www.ingenuity.com).  Figure 7 in Chapter 3 

shows a detail flow chart of this data analysis. 

Microarray 2 

The GC-robust multiarray average (GC-RMA) (Wu et al., 2004) was used to adjust 

background intensity levels, and to normalize and combine the probe pair intensities into 

an estimate of gene expression for each probe set in the data.  A function from 

Affymetrix Microarray Suite (MAS) 5.0  (Liu et al., 2002b) was used to detect the 

Present (P) and Absent (A) calls of the gene expression values. Only probe sets that had 

at least 2 P calls out of 3 replicates at any treatment time were selected for further 

analysis.  The data was then filtered by keeping probe sets that were upregulated or 

downregulated with at least 2.6-fold change at any time point compared to its 

corresponding time point control.  Probe sets that showed significantly differential 

expression profiles across all groups in the time-course experiment were identified at a 1 

percent false discovery rate using maSigPro (Conesa et al., 2006).  maSigPro controls for 
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false discovery rate by applying the Benjamini-Hochberg procedure (Benjamini and 

Hochberg, 1995).  maSigPro first adjusts a general regression model for the data using 

least-square technique to identify differentially expressed genes.  Then, the differences 

between experimental groups are identified using stepwise regression analysis.  Each 

probe set was fitted to a polynomial regression of up to 3 degrees.  The best regression 

model for each probe set was selected using a “two.ways.backward” stepwise regression.  

In the current Affymetrix technology, one gene can be represented by multiple probe sets.  

To avoid this redundancy in our data set, we selected only probe sets having the smallest 

regression model p-value.  Figure 20 in Chapter 4 shows a detail flow chart of this data 

analysis. 

Quantitative RT-PCR 

Microarray 1 

Total RNA (1 µg) was reverse transcribed using the SuperScript First-Strand cDNA 

Synthesis System (Invitrogen).  Real-time PCR reactions were performed with Absolute 

Blue SYBR Green Fluorescein (Cat# AB-4219/B, Thermo Scientific) using four different 

samples in each group. The Ct values for all genes were normalized to that of tubulin, 

alpha 1C (TUBA1C), and the relative value for the control samples (no EGF and 50% cell 

density) was set as one arbitrary unit.  Primer sequences are listed in Table 1.  The ∆-∆ Ct 

method was used to analyze the relative changes in gene expression (Livak and 

Schmittgen, 2001).  

Microarray 2 

Total RNA (2 µg) was reverse transcribed using superscript first strand cDNA 

synthesis system (Invitrogen).  Real time PCR reactions were performed with SYBR 
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Green Supermix (BioRad) using three different samples in each group. The Ct values for 

all genes were normalized to that of cyclophillin PPIA, and the relative value for the 

control samples (t0) was set as one arbitrary unit.  Primers sequences are listed in Table 2. 

The Delta-Delta Ct method was used to analyzed the relative changes in gene expression 

(Livak and Schmittgen, 2001). 

Antibodies and Immunoblotting 

Cell lysates were prepared with lysis buffer containing 62.5 mM Tris-HCl pH 6.8, 2% 

sodium dodecylsulfate SDS and 1% β-mercaptoethanol.  After washing the plates twice 

with cold phosphate buffered saline (PBS), 250 µl of the lysis buffer was added to each 

plate on ice.  The cells were then scraped into 1.5 ml tubes (Cat# 05-048-129, Fisher 

Scientific).  The tubes were boiled for 5 minutes, centrifuged at 10,000 rpm at 4°C for 20 

min using the Eppendorf Centrifuge 5415C.  The supernatants were removed to new 

tubes and stored at -80°C.  Protein samples were quantitated using the Micro BCA 

protein assay kit (Cat# 23235, Fisher Thermo Scientific) as follow: 

1) Five hundred µl of 0.1 M iodoacetamide and 500 µl of 6.25 mM Tris  

HCl pH 6.8 were added to the cuvette.   

2) Bovine serum albumin BSA (0, 2, 4, 8, 10, 15, and 20 µg) or protein samples (2 

µl) were added to the above mix and incubated for 15 min at 37°C followed by a cooling 

process of 5 min at room temperature.   

3) Pierce reagent mix (50% Micro BCA Reagent A, 48% Micro BCA Reagent B, 

and 2% Micro BCA Reagent C) was added to the above buffer and incubated for 60 min 

at 60°C.    
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4) The absorbance of each sample was recorded at 562 nm using the 

spectrophotometer.  Water was used as the blank. 

Protein samples were separated by 6% or 12% sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene 

fluoride membranes (Millipore).  Membranes were blocked with 5% nonfat dry milk in a 

mixture of Tris-Buffered Saline and 1% Tween 20 (TBS-T), incubated with primary 

antibodies, followed by incubation with horseradish peroxidase-conjugated goat anti-

mouse (115-035-003), goat anti-rabbit (111-036-003), or donkey anti-goat (705-035-003) 

IgG (Jackson ImmunoResearch) and development by enhanced chemiluminescence 

(Pierce Fisher Thermo Scientific) on Kodak BioMax light film (Cat # Z370371).  

Antibodies used for this study are listed in Table 3.  ImageJ (Abramoff et al., 2004) was 

used to quantitate each protein band. 

 
Table 1. qRT-PCR Primers Used for Expression Validation of Microarray 1 

Gene Forward primer (5’-3’) Reverse complement 
primer (5’-3’) 

Melting 
Temperature 

(°C) 
KRT1 tgtctggagaatgtgccccgaacg ccgccgccacctccagaaccat 59 
FLG gacaccccggatcctctcacc agctgccatgtctccaaactaaac 55 

LAMA3  caagaggcctccccacaaacagc tggccccaacaatacagagtgagc 55 
LAMC2 ctggcctggaccctgagaag ccggccggcaagtgatt 61 
SPTLC3 tgggatgggattcgcaactaactca ggggcagatgcacgatggaacct 57 
KDSR atgggccttttccgcactattg agccacattcctgaagagcactg 57 
SGPP2 agtggccccgtccctcctc gacgccacccagcacatcc 57 
SGPL1 cctgttgggctgccttgatgc tccgggcgtgtagtaatgtgatgc 55 
SPHK1 ggtgcccgacgaggactttg ccgcccgcacgtagaacag 59 
ASAH1 tgaaccgcaccagccaagaga ggcagtcccgcaggtaagtttc 57 
DEGS1 caggaggcggaggcagagg aaagttcccccggtacccaagtta 55 
DEGS2 gcgggtgtacaggctggcaaaaga acaagggcagcagtccagagcaca 55 
UGCG cctgcgggagcgttgtc ttgttgaggtgtaatcgggtgtag 55 
GBA atcccgatggctctgctgttgtg gccctgctgtgccctctttagtca 57 

SGMS2 aagggggagatccgtgggttgt cattgggtggcagcagcagtgt 57 
CERK gcctgccccaaacccactaacaa tgccccggaaatcagagcctatc 57 

All cDNAs were amplified using the melting temperature at which they had similar efficiency to that of 
TUBA1C. 
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Table 1. qRT-PCR Primers Used for Expression Validation of Microarray 1 
(cont.) 

Gene Forward primer (5’-3’) Reverse compliment 
primer (5’-3’) 

Melting 
Temperature 

(°C) 
LASS3 gccccacaccgaccccacat aacaaagcgagcccctgagaaagt 59 
LASS4 ggagacgccggaaccaggat aggccgcccacgaaggag 55 
PTPLB ggcacgcggaagaagaagg cacccggctgtcatcacca 57 
TECR agccccacgccaccattg gggccccgcgtactctgttag 59 
IVL  ggccacccaaacataaataaccac cacctagcggacccgaaataagt 55 
LOR caggggcaccgatgggcttagag tgaggcactggggttgggaggtag 58 

KRT10 tgaaaccgagtgccagaata cgtagccgccgccgaaactt 59 
CLDN1 cgatgaggtgcagaagatga ccagtgaagagagcctgacc 53 

TJP1 tggtcggaaaacatgctacaca aggccatggaaccagtctcaca 59 
GJA1 accaaccgctcccctctcg tcccgcctgccccattc 55 

ELOVL4 acgtgacgccggctgaggaga cccgggagaaagacgaggaggtg 57 
KLF4 ccggcgggaagggagaag aggggcgccaggttgctac 59 

GATA3 ggcccggcaggacgaga gtagggcgggtaggtggtgatg 57 
ABCA12 tctcgccgaagtatatgggatgtt gcttcggggagatgtgattgg 55 

ALOX12B accccacctcgccacctcacc caccgccccagttgcaaagtctct 55 
PRDM1 tcccgaacatgaaaagacgataaa ctctccgggataagggtagtgaag 57 
BDNF ggcccaatgaagaaaacaataagg gcgggcagggtcagagtg 57 

FBXW7 acgttaacagggcaccagtgg cacccgttttcaagtcccatagtt 55 
CST6 tgggcagcaacagcatctacta cctcggggacttatcacatctg 57 
TGM1 tccgcccacgacacagacacatc gcaggggccgcagcagaaga 59 

SLC27A4 aggcgggcggggtagga gccgggtctcagcagggttta 55 
DLX3 accgccgttccaagttcaaga aggcggctgctgctgtaagtg 59 
PIGA acggggtgcctggactaata tggcctcgctgatgtctgataagt 53 
CDSN agggcccatcgtctcgcactc acccaccacctcgtagccaccata 59 
OCLN ggcagggtgtgggaagcaggac gacgcgggagtgtaggtgtggtgt 59 
CGN ttcccctctttgccattcctacct accagacccccggcactttatcat 59 

CLDN16 gtcatactcagcccctcgcacaga tgaaccaaaagccagggagaaaag 59 
CLDN4 ccgcgccctcgtcatcatcag ataaggccggccaacaggaacacc 59 

TUBA1C ctacccccgcatccacttcc ggggcaccaatccacaaactg 53, 57, 59 
All cDNAs were amplified using the melting temperature at which they had similar efficiency to that of 
TUBA1C. 
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Table 2. qRT-PCR Primers Used for Expression Validation of Microarray 2 

Gene Forward primer (5’-3’) Reverse compliment 
primer (5’-3’) 

Melting 
Temperature 

(°C) 
ATF3 ttcatcggcccacgtgtattgtcc ctcccgccttgatggttctctgct 60 
BCL6 gaagccctatccctgtgaaatg tctggcgcaagtgaagtcg 55 
BMP2 gtgtccccgcgtgcttcttag gctgggggtggggtctctgttt 59 
BMP6 ggcgcccttgtctcagtcatt ctagagccggcagtccagaagtta 57 
BNC1 tcgacccttcacagttcccatcac cggcggaccctgaagaacc 61 
CDH1 ccatcaggcctccgtttct gtggcaatgcgttctctatcc 57 

CDKN1A ggcggcagaccagcatgacagatt gcagggggcggccagggtat 59 
CDKN1B cgtaggggcgctttgttttgttcg ggctcgcctcttccatgtctctgc 59 
CDKN2A catggtgcgcaggttcttggtgac cgtgagccgcgggatgtga 59 
CTNNB1 gtaccggagcccttcacatc gtcgccacaccttcattccta 57 

E2F7 ggatcgggcctgtggacttca ctgtacgggctgctcggttctg 60 
EAF2 atagcgcagcgggattctcaca ttttctagccgacattctccagtatca 57 
EGR1 gcgcagtgccatccaacgacag ttggcggcagggtaggcaggag 55 
ELF1 aaccgtcagtgtggcttcctctcc ctgtggctgctgctccgttttc 56 
ELF5 agcgcctgccttctcttg ggcgcttagtccagtattcag 55 
ETS1 aactcgggggccaggactcttt ctagggcagcagcaggaatgaca 59 
ELK3 gaggagccgcccgaacacagc tgagaagggtgaggcggatgaaata 61 
FOS cagcccgccctcgtctcct ctgcgctcggcctcctgtc 59 

FOSB tcgccctccctcctcgctctgt ccaccccctgtccccaaagtcac 61 
FOSL1 acccccacactcatgaccacacc gggggaaggggaggagacattg 59 
FOXN1 caccaccccagccaccacctc ccggggctgccaagtcacct 61 
HES1 ctggagaggcggctaaggtgtttg ggtgccgctgttgctggtgtag 57 
ID2 cagtcctgtgaggtccgttagg tggtgatgcaggctgacaatagtg 59 
ID3 ggtgcgcggctggtacgag ggggccatcagggggtccag 59 

IRX3 acccgcaccccgccttctacc ctcctcgcgctcgctcccataa 60 
IRX5 gcccggcgtacagcaccag ggggcgccgcgtaaggat 59 

ITGA6 tttttggcgtggctgacttacatc gcagcaggcccgaggttaggac 60.3 
ITGB4 gccgccgcctggtaaaca caggacacgccggatgacag 56 
JUN gacggcgcccccagtgtg gccgcccctccccaacc 59 

KLF6 tttgggggaagggggttgttg gaaggggctgaggtcggtgagtt 59 
LBH cagtggagagcggggagttgtgt cggggcagtgaatggggaaata 57 
MAF cccccggcgatgagacg tggagttggcgaaaggtgtgatac 56 

MAFB cggcggaccctgaagaacc ccaggaccggccacgactc 56 
MAFF cgtgggccctgtcttcctctt tctgccccatccccaacctac 59 
MEIS1 gactcgggcgctttgcttca gcgggtccccatacatcgtg 57 
MITF ctacggccacgggaacagga ttacaaacaacaagcccaaaccact 55 
MSX2 gaagggccaaggcgaaaagact aggcgggatgggaagcacag 59 
MXD1 acgggctcatcttcgcttgtgc aggtgtcgctgctctcgctgaa 57 
MYC cggggctttatctaactcgctgta gcccgcccgctgctatg 58 
NFKB gccgtccagcgccatctcact agccctcagcaaatcctccaccac 59 

NFKBIZ aagggcccgattcgttgtctgat tccccgggcgttggtgttt 59 
PBX1 tccccctccccctcctcatcct cccccggctcttcctcttctgc 59 
PIR gagggtccggagaagcattgg cccggcccgcagtcatc 59 

POU2F3 gccaggtggagccaggaaatg ggccgggaaccagcacaag 57 
All cDNAs were amplified using the melting temperature at which they had similar efficiency to that of 
TUBA1C. 
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Table 2. qRT-PCR Primers Used for Expression Validation of Microarray 2 
(cont.) 

Gene Forward primer (5’-3’) 
Reverse compliment primer 

(5’-3’) 

Melting 
Temperature 

(°C) 
PPIA gcagagggttaaggcgcagactac taaggtgggcagagaaggggtttt 56, 57, 59 

PRDM1 tcccgaacatgaaaagacgataaa ctctccgggataagggtagtgaag 57 
PRMT6 acaggcccgggaggtggtg gtcgctgatgggggctatgaaga 59 

RB1 cgtcatgccgcccaaaac acctcccaatactccatccacaga 57? 
RELA ctccgcgggcagcatcc atcccggcagtcctttcctacaa 57 
RFX2 accgccgccgccatagagac cctgctggggtacctgctgaac 59 
SIN3A gcccctgcccctcctgtgtat ttgggtgatgatggctgctatgaact 57 
SKIL gtcggaggctgttcttactggtgtg agggtcaatgcaatggtctggttt 59 

SMAD1 cacccgtttcctcactctcccaatag ataagcaaccgcctgaacatctcctc 59 
SMAD3 aggcgtgcggctctactaca ctccccagcctttgacgaa 55 
SMAD7 tgacgcgggaggtggatgg ctgatgaactggcgggtgtagca 57 
TCF4 gaggcgggggaggtgttgagatt gggaggggacggagggaagg 55 
SOX2 tcggcggcggcaggat ggcgggcgggggtgtc 59 
SOX9 cagcactcgccgcagcagat gtgtcggcgatgggggtgta 57 
TGIF1 gattcttcgggattggctgtatga acggcgggaaattgtgaactg 59 
TP63 agtttcccgtccatctcccttag aatgacagcccttgaccagaatg 57 

THOC4 ccgtggcgctggaggttt cacgcggatttgctggtctg 55 
TRIM16 cttggcagggagacggaggaaca atcagggcagcagaaggcagacagt 57 
TWIST2 gcggcgctacagcaagaagtcg cagagggcagcgtggggatgat 59 
ZNF323 ccggggtttgcaataagggagtc aaaggccggaaatgcgtcagc 59 

All cDNAs were amplified using the melting temperature at which they had similar efficiency to that of 
TUBA1C. 
 

Transepithelial Electrical Resistance (TER) and Paracellular Permeability 

The TER was determined on confluent  monolayers of NHEKs grown on 

polycarbonate Transwell™  filters (0.4-µm pore size, 12-mm diameter, 1.12 cm2;  Cat # 

3401; Corning, Inc.) with the Endohm device in the resistance mode (World Precision 

Instruments) at 48, 72, and 96 h after the transfer into high Ca2+ (1.8 mM) with or without  

EGF (10 ng/ml). TER values (Ohms) were calculated by subtracting the blank values 

from the bare filter with medium and multiplying by the surface area of the filter.  Before 

the TER measurement, the Endohm device was equilibrated with the culture medium at 

room temperature for 15 min. 
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Table 3. Antibodies Used for Immunoblotting and Immunofluorescence Assays 
Primary Antibody Secondary Antibody 

 Catalog Number Source Dilution  Source Dilution 

A. Immunoblotting 
KRT1 NLC-K1 Leica Microsystems 1:4000 Goat anti-mouse Jackson ImmunoResearch 1:10,000 

FLG NCL-Filaggrin Leica Microsystesms 1:300 Goat anti-mouse Jackson ImmunoResearch 1:10,000 

DSG1 27B2 Molecular Probes 1:330 Goat anti-mouse Jackson ImmunoResearch 1:10,000 

TJP1 ZO1-1A12 Molecular Probes 1:400 Goat anti-mouse Jackson ImmunoResearch 1:10,000 

GRHL1 HPA005798 Sigma-Aldrich 1:400 Goat anti-rabbit Jackson ImmunoResearch 1:15,000 

CLDN1 MH25 Molecular Probes 1:250 Goat anti-rabbit Jackson ImmunoResearch 1:15,000 

KLF4 sc-20691 Santa Cruz 1:250 Goat anti-rabbit Jackson ImmunoResearch 1:15,000 

FOXN1 ARP30053_T100 Avia System Biology 1:200 Goat anti-rabbit Jackson ImmunoResearch 1:15,000 

POU2F3 ARP32537_P050 Avia System Biology 1:2000 Goat anti-rabbit Jackson ImmunoResearch 1:15,000 

ELF5 sc-9645 Santa Cruz 1:200 Donkey anti-goat Jackson ImmunoResearch 1:30,000 

       
B. Immunofluorescence 
CLDN1 MH25 Molecular Probes 1:15 AlexaFluor 488 goat 

anti-rabbit IgG H+L 
Molecular Probes 

(A11008) 
1:1000 

TJP1 ZO1-1A12 Molecular Probes 1:40 AlexaFluor 594 goat 
anti-mouse IgG H+L 

Molecular Probes 
(A11005) 

1:1000 
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Paracellular flux assays were performed on confluent monolayers of NHEKs grown 

on polycarbonate Transwell™ filters (0.4-µm pore size, 12-mm diameter, 1.12 cm2, Cat # 

3401; Corning, Inc.).  Frozen P3 NHEKs were grown in KSFM supplemented with 5 

ng/ml EGF and 50 µg/ml BPE.  When cells were approximately 80% confluent, they 

were trypsinized and 9.4 x 104 NHEKs in 500 µl were plated on the filters and left 

overnight to attach.  The flux was measured 48, 72, and 96 h after the transfer into high 

Ca2+ medium (1.8 mM) with or without EGF (10 ng/ml).  Two different tracers were used, 

a 3 kDa FITC-dextran (Cat # D3305; Molecular Probes, Inc.), and a 40 kDa Texas Red-

dextran (Cat# D1829; Molecular Probes, Inc.).   The tracers were suspended in P buffer 

(10 mM Hepes, pH 7.4, 1 mM sodium pyruvate, 10 mM glucose, 3 mM CaCl2, 145 mM 

NaCl).  Media in the apical and basal compartments of the keratinocyte sheet grown on 

the Transwell™ filters were replaced with 164 µl or 600 µl of P buffer, respectively.  The 

plates were incubated in 37°C to equilibrate for at least 30 min.  Next, 36 µl of P buffer 

containing either one of the tracers was added to the apical compartment at a final 

concentration of 1 mg/ml.  Cells were incubated at 37°C for 3 h.  The basal compartment 

media was diluted 1:7 (v/v) with the P buffer before equal-volume aliquots (100 µl) were 

collected for measurement.  The amounts of 3 kDa and 40 kDa dextrans were determined 

in a fluorometer (FLx800™; BioTek Instruments, Inc.) on a flat-bottom 96-well plate 

(Cat# 353296, BD Falcon).  The amount of diffusible dextrans was calculated from a 

titration curve of known concentration of the tracers. 

Organotypic Cultures 

The sources for reagents and materials used for this experiment are listed in Table 4.  

Neonatal Dermal Fibroblasts (ND Fibroblasts, Lonza) (seventh passage) were maintained  
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Table 4. Sources and Catalog numbers for Reagents and Materials Used in the Organotypic Culture Experiment 
Item Source Cat #  

Adenine Sigma A2786-5G 
strontium chloride Sigma 439665-5G 
L- serine VWR/Ameresco Solar S4311-25G 
choline chloride Sigma C7527-100G 
Ethanolamine Sigma E0135-100ML 
O-phosphoryl –ethanolamine Sigma P0503-1G 
selenious acid Sigma 211176-10G 
Triiodothyronine Sigma T0281-10MG 
Hydrocortisone Sigma H0888-1G 
Progesterone Sigma P8783-1G 
Transferring Invitrogen 11107018 
calcium chloride Sigma C4901-100G 
bovine insulin Sigma I0516 or I6634 
linoleic acid/bovine serum albumin mixture Sigma L9530-5ML 
fibroblasts normal human dermal neonatal (CI-1-F) Lonza CC-2509 
Ham's F12 Fisher/Hyclone 10-080-CV 
Fetal bovine serum Fisher/Hyclone SH30070 
DMEM with 4.5 g/l glucose Fisher/Media Tech MT-15-017-CM 
L-Glutamine Sigma G7513-20ML 
sodium pyruvate Sigma S8636-100ML 
penicillin/streptomycin (10,000 units/10,000 µg, 100mls) Fisher SV30010 
Transwell inserts (3.0µm polycarbonate membrane insert, 6 well) Corning 3414 
sterile cotton pads Fisher 19-064-585 
 type 1 collagen BD Biosciences 354236 
ascorbic acid Acros Organics 401475000 
HEPES Sigma H4034 
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in DMEM with 4.5 g/l glucose supplemented with 4 mM L-Glutamine, 0.11 mg/ml 

sodium pyruvate, 10% FBS with 100 units of penicillin and 100 µg of streptomycin/ml.  

This medium was defined as fibroblast growth medium.  Fifth passage NHEKs were 

maintained in KSF medium supplemented with 5 ng/ml EGF and 50 µg/ml bovine 

pituitary extract. 

 Organotypic cultures were prepared as described previously (Chen et al., 1995b).     

 Specifically, cultures were grown on polycarbonate Transwell™ filters (3 µm pore size, 

24 mm diameter) as follows:  

1) Type 1 collagen (Cat# 354236, BD Biosciences) was mixed with DMEM which 

had been supplemented with 10% FBS and 50 µg/ml ascorbic acid.  The final collagen 

concentration was 1.25 mg/ml. This was mixed on ice to prevent early gelation. 

2) One ml of the collagen/media mix was put into each insert to cover the entire 

bottom.  This layer was allowed to harden for approximately 30 min at 37°C until the 

collagen turned pink.  

3) Type 1 collagen was mixed with ~20,000 fibroblasts/ ml to a final collagen 

concentration of 1.0 mg/ml in DMEM supplemented with 10% FBS and 50 µg/ml 

ascorbic acid.  The collagen was added last and slowly to the mix.  Everything was mixed 

on ice to prevent early gelation. 

4) Three ml of the collagen/fibroblast mix was put into each well.  

5) The collagen was allowed to polymerize at 37°C for 2 h (Gangatirkar et al., 2007). 

6) Two ml of fibroblast growth media (as described above) was placed in the bottom 

well.  
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7) The following day, 2.5 ml and 1.5 ml fresh fibroblast growth media was placed in 

the bottom well and the insert, respectively (this volume was recommended by Corning).  

By this time, the cellular collagen layers had contracted some (note: the more fibroblast 

the more contraction). 

8) The gel was allowed to contract for 5-7 d after initial plating in a incubator at 

37°C.  After 6 d of incubation at 37°C, the gel was washed and NHEKs (1.5 x 105 cells in 

50 µl) were seeded on top using micro pipette tip.  The inserts were incubated for 5 min 

at room temperature to allow medium to soak into the collagen. 

9) The inserts were then transfered to the incubator and the cells were allowed to 

attach for 2 h. 

10) Plating medium (Chen et al., 1995b) was added to cover the gel (2.5 ml in the 

well and 0.5 ml in the insert).The plating medium was DMEM/Ham’s F12 (3:1) 

Mediatech/Hyclone) supplemented with a final concentration of 1.9 mM calcium chloride 

(Sigma), 7.25 mM L-Glutamine (Sigma), 0.18 mM adenine (Sigma), 1 mM strontium 

chloride (Sigma), 1 mM L-serine (VWR), 0.64 mM choline chloride (Sigma), 0.1 mM 

ethanolamine (Sigma), 0.1 mM O-phosphoryl-ethanolamine (Sigma), 2 µg/ml linoleic 

acid/bovine serum albumin mixture (ratio 1:100, Sigma), 53 nM selenous acid (Sigma), 5 

µg/ml insulin (Sigma), 5 µg/ml transferrin (Invitrogen), 20 pM triiodothyronine (Sigma), 

0.4 µg/ml hydrocortisone (Sigma), 10 nM progesterone (Sigma), 50 mM Hepes, 10 ng/ml 

EGF and 100 units penicillin and 100 µg/ml streptomycin (Hyclone). 

11) This medium was changed every 2-3 d for the next 5 d. 

12) The cultures were kept submerged for 5 d.  The organotypic cultures were then 

raised to the air-liquid interface using cotton filter pads.   
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13) Two ml of cornification medium (Chen et al., 1995a) with or without EGF (20 

ng/ml) was put into the bottom well.  The cornification medium used for this period was 

DMEM/Ham’s F12 (1:1) with all supplements as in plating media, but without the EGF 

and progesterone.  

14) The medium was changed every 2-3 d.  Only 1.5 ml of media was used from this 

point forward.  Cotton pads were changed every 1 week.  At the time the cotton pads 

were changed, 2 ml of cornification media was used.  After that, 1.5 ml of media was 

used at every meida change. Topical treatment of 30 µl 1x PBS with or without EGF (20 

ng/ml) was done at every media change throughout the air-exposure period.  The cultures 

were harvested after 14 d of air exposure. 

Histology 

Cultures were fixed with buffered formalin (10%) obtained from the histology lab for 

at least 1-2 hour at room temperature.  Since the tissues were very fragile, they were 

embedded in agar (1%) mixed with buffered formalin.  The 1% agar was made as follow: 

1) Combine 90 ml ddH2O + 1 g agarose  
 

2) Weigh the flask with agarose to be able to adjust for water evaporated during 

boiling. 

3) Boil gently until thoroughly dissolved.  
 

4) Add water to weight measured in 2). 
 

5) Add 10 ml of 10% neutral buffered formalin in a 15 ml tube and mix well. 
 

6) Put the quantity to be used immediately into a small bottle with a dropper top.  

Store this in either a 60°C oven (keeping the bottle tightly stoppered), or while in use in a 
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60°C water bath in a chemical safety hood if formalin is used.  To melt, put a 15 ml tube 

in a beaker containing water that had been boiled using a microwave. 

7) Pour the rest of the agar into a sterile 100 ml bottle.  Allow to solidify.  Store at 

room temp (expiration 2 months).  When needed, warm the bottle in a microwave (loosen 

the cap of the bottle), then aliquot the required amount. 

8) The tissues were embedded in agar as follows: 

a) Working on a clean piece of glass, place a small amount of the agar on the 

glass.  Observe the change in its consistency.  When it begins to solidify, place the tissue 

in the agar.  Orient the tissue as you would if you were embedding into a paraffin block.  

Drop more agar over the tissue.  Continue to do this until the tissue is surrounded by the 

agar and a small mound of agar is formed.  If the agar is allowed to solidify too much 

between applications the layers will peel away from each other.  Large bubbles should 

also be avoided during this process. 

b) When the mounded agar is solid, trim the excess away with a scalpel to 

form a roughly square shape.  Slide the scalpel under the agar/tissue mound and gently 

lift it into a processing cassette.  Close the cassette and placed in 70% alcohol.  Take to 

the histology lab for further processing. 

Transepidermal Water Loss (TEWL) Measurement 

The TEWL measurement protocol was adapted from Urtti et al., 2008. The TEWL 

(g/m2h) was measured using a VapoMeter (Delfin Technologies Oy) with the nail adapter 

(4.5 mm in diameter).  Organotypic cultures grown on filters were removed from the 

inserts by moving the scalpel carefully and gently around the edges of the insert.  The 

cultures were placed on Whatman filter paper soaked with 1x PBS and allowed to 
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equilibrate with ambient air for 15 min at room temperature before TEWL measurements 

were taken. TEWL measurements were carried out at 24-25°C and 27-35% humidity. 

Indirect Immunofluorescence and Confocal Microscopy 

Fifth passage NHEKs (17,000 cells in 500 µl) were plated in each chamber of glass 

culture slides (Cat # 354118, BD Falcon) that had been coated with fetal bovine serum 

for 1 h.  Last feed was given to the cells at 100 % confluent cell density.  Forty eight hour 

after the last feed, a pre-treatment with basal medium with or without EGF (10 ng/ml) in 

the presence of 1.8 mM Ca2+ was given to the cells.  After the 24 h pre-treatment, the 

medium was changed to basal medium containing the exact same treatment of  EGF (10 

ng/ml) and 1.8 mM Ca2+ as in the pre-treatment medium.  After 96 h of EGF treatment, 

cells were fixed in 4% paraformaldehyde (in PBS) for 15 min and then washed with PBS 

3 times (5 min/wash).  Slides were blocked with 5% normal goat serum and 0.1% NP-40 

in PBS for 30 min, followed by 30 min of incubation with CLDN1 (MH25) and TJP1 

(ZO1-1A12, Molecular Probes) antibodies diluted in blocking solution (16.67 µg/ml  and 

12.5 µg/ml, respectively).   Cells were then washed 3 times with PBS (10 min/wash) and 

incubated for 30 min  with secondary antibodies: 1:1,000 AlexaFluor 488 goat-anti-rabbit 

IgG H+L (A1108, Molecular Probes), and 1:1,000 AlexaFluor 594 goat-anti-mouse IgG 

H+L (A11005, Molecular Probes).  Before removing the chambers, cells were rinsed with 

PBS 3 times (10 min/rinse).  The glass slides were then mounted with Prolong® Gold 

antifade reagent with DAPI (Cat# P36931; Molecular Probes) (use one small 

drop/chamber, regardless of whether the chamber was empty).  To help the mounting 

media spread evenly, slides were warmed at 37°C for 10-25 min and left overnight in the 

dark to dry.   
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Fluorescent images were captured using the Zeiss LSM 710 laser scanning confocal 

microscope with the ZEN 2009 software (Zeiss).  During image acquisition, all images 

were taken with a 40x objective lens at identical settings (pixel dwell, 12.6 µs; master 

gain, 823; digital gain, 1.00; digital offset, -157.41; pinhole, 90 µm; and 2% laser power).  

For presentation, brightness and contrast levels were adjusted across the entire images 

using Adobe Photoshop. 

Cornified Envelope Assay 

Fifth passage NHEKs were grown to confluence and pretreated with vehicle (0.1% 

DMSO) or PD153035 (300 nM) 2 h before treatment. Basal medium with or without 

EGF (10 ng/ml) was added in the presence of vehicle or PD153035 (300 nM) for 24 h.  

The medium was replaced with fresh medium containing the same treatments.  After 72 h, 

the cell envelope competence assay (n = 3) was performed as previously described (Cline 

and Rice, 1983) with modifications.   

1) Cells were washed twice with 5 ml 1 x PBS containing 0.02% EDTA (Cat # 

E5134-500G, Sigma) and then trypsinized with 1 ml 0.05% Trypsin/EDTA solution (Cat 

# 25300054, Invitrogen) for 3 min at 37°C. Plates were shaken gently until most of the 

cells came off the plates. 

2) Two ml of trypsin neutralizing solution (Cat # CC5002, Lonza) was added to each 

plate and the cells were resuspended and transferred to a 15 ml tube. 

3) Two ml of PBS were used to collect the remaining cells on the plates, which were 

added to the same 15 ml tube.  Cells were counted by using 2 x 10 µl of cell suspension 

directly with a hemocytometer, using phase contrast (do not add trypan blue) to 

determine the total number of cells both alive and dead. 
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4) Cells were centrifuged at 200 x g for 10 min using the IEC CL31R Multispeed 

centrifuge (Thermo Scientific).  

5) Cells were then resuspended vigorously in serum-free media (3 ml for 100 mm 

plate, 2 ml for 60 mm plate, 1 ml per 6-well dish well). 

6) They were incubated with 10 µg/ml of calcium ionophore A23187 (C7522, 

Sigma-Aldrich) for 5 h at 37°C in a gentle Hybaid rocker with speed of rotation was set 

to 12 (National Labnet Company). 

7) Cells were centrifuged at 2,500 x g for 5 min using the IEC CL31R Multispeed 

centrifuge (Thermo Scientific). 

8) Cells were suspended in 10mM Tris/HCL pH 7.5 + 1% SDS and 1% 2-

mercaptoethanol by strong vortexing and pipetting (use 400 µl for 100 mm plates, 250 µl 

for 60 mm plates, and 125 µl for each 6-well dish well). 

9) The remaining cornified envelopes were then counted immediately. 

10) The percentage cornified envelopes was estimated by dividing the number of 

envelopes counted by the initial cell number. 

Lipid Extraction 

Fifth passage NHEKs were maintained in KSFM supplemented with 5 ng/ml EGF 

and 50 µg/ml bovine pituitary extract. Pre-treatment in basal medium with or without 

EGF (10 ng/ml) began 48 h after the last feed with complete medium at confluence. After 

24 h of pre-treatment, the medium was changed to basal medium with or without EGF 

(10 ng/ml) in the presence of 1.8 mM Ca2+.  After 48 h of treatment, cell pellets were 

extracted by the Bligh-Dyer method (Bligh and Dyer, 1959), and split into the aqueous 

and organic phases. The organic phases were dried under nitrogen gas, redissolved in 
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chloroform (Cat # 650498, Sigma)/methanol (Cat # L6804, Fisher) (1:1) and stored at -

20°C until used.  The 3.5 ml aqueous phase was discarded as no further analysis was 

required of this phase. 

High Performance Thin-layer Chromatography (HPTLC) 

Extracted  lipids from the organic phase were separated using one-dimensional 

HPTLC on 10 cm x 10 cm silica plates using the “ceramide development system” as 

previously described (Ponec and Weerheim, 1990).  Specifically, ceramides were 

separated as follows: 

1) Cleaning Plates. To remove possible impurities that could interfere with lipid 

separation, plates were washed in 60:40 solution of methanol/ethyl acetate (Cat # 

33000000, Pharmco-AAPER), followed by 30:20:50 solution of chloroform/ethyl 

acetate/diethyl ether. Then, the plates were air dried. 

2) Activation.  After evaporation of all solvents, the plates were activated for 15 min 

at 130°C in the Isotemp oven (Fisher Scientific). 

3) Sample Application.  Each lane was approximately 1cm wide.  Three µl of a 

standard mixture containing linoleic acid, Cholesterol, Cer(NS), Cer(AP), and 

Glucosylceramide was applied to each plate.  Each of these standards had a final 

concentration of 0.2 µg/µl.  Standards for cholesterol and linoleic acid, ceramide NS and 

GC, and ceramide AP, were from Sigma-Aldrich, Avanti Polar Lipids, and Evonik 

Industries, respectively.  Then, 28 µl of the - EGF sample and 28 µl of the + EGF sample 

were added to the next two spots on the plate, respectively.   

NOTE: Application of sample drops was done on a 6 mm streak, as opposed to a dot. 
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4) Development. All developments were carried out at room temperature. Plates 

were placed “face down” in the Latch-Lid Chromatotank chamber (General Glass 

Blowing Company) 

5) Ceramide development system.  Plates were put in the chamber with 25 ml of  

a) chloroform (Cat # 650498, Sigma).  By capillary action, chloroform rose on the 

plate.  When it reached a 15 mm height of the TLC plate, the plate was removed from the 

chamber and dried under an air stream at 40°C on the heat block of the Reacti-Therm III 

Heating Module for 10 minutes.  During this time, the solvent was removed from the 

chamber.  When the plate was dried, 25 ml of the next solvent was poured into the 

chamber. 

b) chloroform/acetone (Cat # 179124, Sigma)/methanol (Cat # L6804, Fisher) 

(18:2:4).  When the solvent reached a 10 mm height of the TLC plate, the plate was 

removed from the chamber and processed as described in a) above. 

c) chloroform/methanol/hexyl acetate (AC14850-0010, Acros Organics)/acetone 

(21.5:1:0.5:2.5).  When the solvent reached a 70 mm height of the TLC plate, the plate 

was removed from the chamber and processed as described in a) above. 

d) chloroform/acetone/methanol (19:1:5) When the solvent reached a 20 mm 

height of the TLC plate, the plate was removed from the chamber and processed as 

described in a) above. 

e) chloroform/methanol/diethyl ether/ethyl acetate/hexyl acetate/acetone                    

(18:1:1:1:0.5:4).  When the solvent reached a 75 mm height of the TLC plate, the plate 

was removed from the chamber and processed as described in a) above. 
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f) hexane (Cat#34859, Sigma)/diethyl ether/ethyl acetate (Cat # 33000000, 

Pharmco-AAPER) (20:4:1).  When the solvent reached a 90 mm height of the TLC plate, 

the plate was removed from the chamber and dried under air stream at 40°C on the 

heating block of the Reacti-Therm III Heating Module for 10 minutes. 

6) Staining.  After final drying, plates were heated for 5 min at 130°C using the 

Isotemp Oven (Fisher Scientific).  Plates were submerged into a staining solution 

containing acetic acid, H2SO4, H3PO4, H2O (5:1:1:95) and 3.0% copper (II) sulfate for 10 

sec.   

7) After staining, the plates were dried at 60°C on a heating block of the Reacti-

Therm III Heating Module for and then charred at 180°C for 10 min.  A FOTO/Analyst® 

Investigator/Eclipse workstation was used to estimate the quantities of each band relative 

to each other on a plate, while ImageJ was used to get a more precise density 

measurement on a 100 megabytes image of the plate. 

 Assignment of lipid bands. Our separation method closely follows the “ceramide 

development system”  presented by Ponec & Weerheim (Ponec et al., 2003).  This 

method separates the lipids according to their polarity with the least polar lipids at the top 

of the HPTLC plate.  Cer9 presents just below ceramide Cer2 (Jungersted et al., 2010; 

Ponec and Weerheim, 1990).  Cer2 presents as two bands, a large upper band and a 

smaller, lower band (Breiden et al., 2007; Ponec and Weerheim, 1990).  Jungersted and 

colleagues do not show the second band of Cer2.  This led to initial concern as to how to 

assign the bands seen on our plates.  However, Ponec and Weerheim show that Cer9 

presents as a much lighter band than Cer2.  This matched our data best, and we agreed 

the much lighter band below the second band of Cer2 as Cer9.  Cer8 appears below 
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ceramide Cer5 in (Breiden et al., 2007; Ponec and Weerheim, 1990).  Hence, we assigned 

our bands accordingly. 

Inhibition of EGFR Signaling Pathways Studies 

Chemicals used to inhibit PI3K, MEK, p38, PKC, and Rac1 were wortmannin (Cat # 

681675, Calbiochem), U0126 (Cat # 662005, Calbiochem), SB20358 (Cat # 559389, 

Calbiochem), Gö6983 (Cat # 365251, Calbiochem), NSC23766 (100 µM, Cat # 553502, 

Calbiochem), respectively.  Fifth passage NHEKs were grown in KSFM supplemented 

with 5 ng/ml EGF and 50 µg/ml bovine pituitary extract.  After 48 hours of the last 

addition of complete media, plates were randomized and pre-treated 60 min in basal 

media with either wortmannin (400 nM), U0126 (10 µM), SB20358 (20 µM), Gö6983 

(10 µM), or 0.1 % DMSO (D2650-5X5ML, Sigma).   Cells were then treated with or 

without EGF (10 ng/ml) for 4 h or 24 h.  For statistical analysis, 3 replicates were isolated 

at each time point.  Another separate experiment was done with NSC23766 (100 µM, Cat 

# 553502, Calbiochem).  NHEKs were grown as previously described.  After 48 h of the 

last addition of complete media, plates were randomized and pre-treated for 16 h in basal 

media with NSC23766.  Then, cells were treated with or without EGF (10 ng/ml) for 4 or 

24 h.  For statistical analysis, 3 replicates were isolated at each time point.   

Statistical Analysis 

The statistical tests that were used to determine significance between groups were 

carried out using Prism 3.0 or Microsoft Excel 2007.  The specific test used for each 

analysis is listed in each figure legend. 
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EGFR REGULATION OF EPIDERMAL BARRIER FUNCTION 

EGF Affects Keratinocyte Cell Fate 

Cell density is a major determinant of keratinocyte cell fate (Poumay and Pittelkow, 

1995), acting through intercellular signaling mechanisms to affect the expression of 

thousands of genes (Gazel et al., 2003; Radoja et al., 2006).  However, the role of EGF in 

regulating these genes has yet to be described.  Our interest was to determine the 

genome-wide effects of EGFR activation on epidermal barrier function.  Using 

microarray technology, we identified 4,685 density-dependent genes (Figure 7).  Of these 

genes, 2,676 genes were found to be regulated by EGF.  Contrary to the effects of density, 

EGF repressed the expression levels of 91% of the density-induced genes and elevated 

the level of expression of 96% of the density-repressed genes.  The former observation 

suggested that EGF plays a critical role in inhibiting keratinocyte differentiation.  

Specifically, EGF affected 1,039 genes that had explicit, as well as implicit, relationships 

to epidermal differentiation, based on the literature.  In order to display the microarray 

profiles of the epidermis associated genes, we prioritized 72 genes of the 1,039 genes that 

were highly annotated to epidermal differentiation (Figure 7).  A heat map of the 72 

genes is shown in Figure 8A.  Among the 72 genes, EGF down-regulated 83% of the 

density-induced genes and up-regulated all of the density-repressed genes.  To validate 

this observation, we performed qRT-PCR on well-established suprabasal (KRT1 and FLG) 

and basal (LAMA3 and LAMC2) expressed genes (Figure 8B).  As qRT-PCR results 

confirmed this relationship and the genes in these clusters appeared to associate with the 

differentiating or proliferating cell compartments of the epidermis, we further explored 

this association for all 72 genes.  An intriguing finding regarding the 72 genes was that  
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Figure 7. Diagram of the Gene Expression Data Analysis Workflow for 
Microarray 1 
On Human Gene 1.0 ST arrays, probes are grouped into transcript clusters.  A known or 
putative gene can be represented by one or more transcript clusters.  Contrary to the effects of 
density, EGF repressed the expression levels of 91% of the density-induced genes and elevated 
the levels of expression of 96% of the density-repressed genes.  This observation suggested that 
EGF plays a critical role in inhibiting keratinocyte differentiation.  Hence, we used 
GeneIndexer to find 1,039 genes that had explicit, as well as implicit, relationships to epidermal 
differentiation.  In order to display a visible heatmap of the microarray profile of the epidermis 
associated genes, we reduced the 1,039 genes to 72 genes that were highly annotated to 
epidermal differentiation.  Our interest was to determine the biological effects of EGF on 
keratinocyte differentiation.  During keratinocyte differentiation, most of the differentiation 
markers and suprabasal genes are induced (Table 5).  Hence, our analysis was focused on the 
density-induced genes.  From the list of density-induced genes, we identified genes associated 
with skin diseases, as dysregulation of the EGFR signaling pathways have been associated with 
skin diseases.  We also performed gene ontology, KEGG, and bioinformatics analyses on the 
density-induced EGF-responsive genes.  
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most of the density-upregulated genes are expressed in the suprabasal layers (spinous, 

granular, and cornified layers) whereas most of the density-downregulated genes are 

expressed in the basal layer of the epidermis (Table 5).  This observation suggests that 

EGF may affect the mRNA levels of genes expressed not only in the differentiating 

keratinocytes but also in the proliferative keratinocytes; thus, affecting the homeostasis of 

the epidermis.    To determine the physiological relevance of this observation, we 

compared the effects of EGF and TGF-α, an endogenous ligand expressed in human 

keratinocytes (Coffey et al., 1987) on mRNA level of epidermal keratinocyte genes.  We 

observed that they produced almost identical responses (Figure 8C), supporting the use of 

EGF to study the action of EGFR signaling in our study. 

 Activation of EGFR signaling in NHEKs is shown to be essential for the G1/S cell 

cycle progression and for the inhibition of CE formation and differentiation-related genes 

(Kobayashi et al., 1998; Sun and Green, 1976). Inhibition of EGFR signaling opposes 

these effects and promotes terminal differentiation (Peus et al., 1997; Sutter et al., 2009).  

Recently, a study using organotypic cultures indicated that DSG1 is required to suppress 

the sustained activation of EGFR/ERK signaling in the granular layer and acts together 

with other desmosomal proteins such as DSG2 and DSC3 to support a signaling network 

that balances keratinocyte proliferation and differentiation to maintain epidermal tissue 

homeostasis (Getsios et al., 2009).  Here, EGF decreased RNA and protein levels of 

DSG1 and atranscription factor known to regulate its expression, GRHL1 (Figure 8D).  

Mice lacking Grhl1 develop hair loss and plamoplantar keratoderma as observed in 

humans with DSG1 mutations (Wilanowski et al., 2008).  This cross-regulation between  
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Figure 8. EGFR Regulation of Keratinocyte Cell Fate 
(A) Heat map profile of log2 ratio of 72 genes identified by GeneIndexer and DAVID as highly 
enriched in ectoderm development (Figure 7).  NHEKs were grown to either 50% or 100% 
confluent cell density before treatment with basal medium, or medium containing EGF (10 ng/ml) 
for 48 h, with the treatment medium being replaced once at 24 h.  The ratios of the means are 
color-coded to show relative RNA expression. Samples with no EGF and 50% confluent cell 
density are set as control and color-coded in black. Green indicates down-regulation while red 
indicates up-regulation of relative gene expression compared to control. Samples grown to 100% 
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Figure 8. EGFR Regulation of Keratinocyte Cell Fate (cont.) 
density with EGF (10 ng/ml) were compared to those without EGF in the same cell density 
condition, in order to visualize the effects of EGF on density-dependent gene expression (n = 3-4).  
(B) Validation by qRT-PCR (n = 3-4) of EGF effects on genes known to be expressed in the 
suprabasal (KRT1 and FLG) and basal (LAMA3 and LAMC2) layers of the epidermis. *p < 0.017, 
**p< 0.01.  
(C) The effects of TGF-α (50 ng/ml) on genes expressed in the suprabasal (KRT1 and FLG) and 
basal (LAMA3 and LAMC2) layers as measured by qRT-PCR (n = 4).  *p < 0.017, **p< 0.01.  
(D) Densitometry (left panel) of protein immunoblots (right panel) for DSG1 and GRHL1 (n = 3). 
Values are normalized to the loading control ACTB. Cells were grown to 100 % confluent cell 
density before switching to basal medium with or without EGF (10 ng/ml).  The media was 
replaced with fresh basal media containing the same treatements after 24 h.  Cell lysates were 
harvested 24 h after the last media change. 
All bars represent means ± SD. Student’s t-test was used to evaluate for statistical significance. 
*p < 0.05, **p< 0.01, ***p < 0.001. Ŝidák-Bonferonni corrections were used in (B) and (C) with 
p-value cut off indicated. 
 

DSG1 and EGFR provides a specific example of a mechanism for regulating epidermal 

homeostasis. 

EGF Affects All Major Processes of Epidermal Differentiation 

One goal of this research was to determine the biological effects of EGF on 

keratinocyte differentiation.  As shown in Figure 8A, during skin differentiation, most of 

the genes known to be expressed in the suprabasal layers of the epidermis are upregulated.  

Therefore, we used 1,298 density-upregulated EGF-responsive genes to uncover aspects 

of epidermal differentiation that are regulated by EGF.  Gene ontology (GO) analysis was 

performed to identify biological processes and cellular components overrepresented 

among the 1,298 genes.  In Table 6, only nonredundant categories with the largest 

number of genes and p-value < 10-3 or p-value < 10-2 are shown for biological process 

and cellular component, respectively.  Since our goal was to understand how EGF 

regulates the epidermal barrier function, we focused on these categories: lipid 

biosynthesis, cornified envelope, and cell-cell junction, as they play critical roles in the 

formation of epidermal barrier.  Our next task was to explore these aspects in detail.
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Table 5. Literature Support for the Granular- or Basal Stratum-specific Expression 
of the 72 Genes in Ectoderm Development 
Transcript 
ID 

Gene 
Symbol 

Gene Name Reference* 

A. Granular Expressed Genes 
7920165 FLG filaggrin Radoja et al, 2006 ;Toulza et al, 2007 
7920185 LCE3D late cornified envelope 3D Marshall et al, 2001 
7920155 HRNR hornerin Makino et al, 2001 
7905563 LOR loricrin Radoja et al, 2006; Toulza et al, 2007 
7963491 KRT1 keratin 1 Toulza et al, 2007 
7905548 SPRR3 small proline-rich protein 3 Mischke et al, 1996 
7920146 RPTN repetin Boehnke et al, 2007 
8124862 CDSN corneodesmosin Radoja et al, 2006; Toulza et al, 2007 
7920252 S100A7 S100 calcium binding protein A7 Eckert et al, 2006 
8015104 KRT10 keratin 10 Grone et al, 2004 
8109001 SPINK5 serine peptidase inhibitor, Kazal type 5 Radoja et al,2006; Galliano et , 2005 
7947481 ELF5 E74-like factor 5 (ets domain transcription factor) Oettgen et al, 1999 
8012309 ALOX12B arachidonate 12-lipoxygenase, 12R type Radoja et al, 2006; Toulza et al, 2007 
8046124 DHRS9 dehydrogenase/reductase member 9 Everts et al, 2007 
7963534 KRT4 keratin 4 Wanner et al, 1996 
8102232 LEF1 lymphoid enhancer-binding factor 1 Merrill et al, 2001 
7931859 CALML5 calmodulin-like 5 Toulza et al, 2007 
7920182 LCE3E late cornified envelope 3E Marshall et al, 2001 
7920196 SPRR2D small proline-rich protein 2D Katou et al, 2003 
8026398 CASP14 caspase 14, apoptosis-related cysteine peptidase Toulza et al, 2007 
8081826 UPK1B uroplakin 1B Lobban et al, 1998 
8015323 KRT13 keratin 13 Murakami and Saito, 1990 
8163002 KLF4 Kruppel-like factor 4 (gut) Radoja et al, 2006 
7948420 FABP5 fatty acid binding protein 5 (psoriasis-associated) Radoja et al, 2006; Oettgen et al,1999 
7978222 TGM1 transglutaminase 1  Toulza et al, 2007 
7988050 TGM5 transglutaminase 5 Radoja et al, 2006 
8015357 KRT9 keratin 9 Knapp et al, 1986 
7941401 OVOL1 ovo-like 1(Drosophila) Nair et al, 2006 
7963479 KRT2 keratin 2 Virtanen et al, 2010 
8060432 TGM3 transglutaminase 3  Radoja et al, 2006 
7902810 LMO4 LIM domain only 4 Sugihara et al, 1998 (basal) 
8067839 KGFLP1 keratinocyte growth factor-like protein 1  
8015376 KRT16 keratin 16 Le et al, 1998 
8157216 UGCG UDP-glucose ceramide glucosyltransferase Radoja et al, 2006; Sutter et al, 2009 
7944537 POU2F3 POU class 2 homeobox 3 Toulza et al, 2007 
7898916 GRHL3 grainyhead-like 3 (Drosophila) Yu et al, 2006 
8038670 KLK5 kallikrein-related peptidase 5 ishida-Yamamoto et al, 2005 
7921099 CRABP2 cellular retinoic acid binding protein 2 Radoja et al, 2006 
7939314 EHF ets homologous factor Tugores et al, 2001 
7920191 LCE3A late cornified envelope 3A Marshall et al, 2001 
8161478 KGFLP2 keratinocyte growth factor-like protein 2  
8095728 EREG epiregulin  
8147766 FZD6 frizzled homolog 6 (Drosophila) Romanowska et al, 2009 (basal) 
7963406 KRT6B keratin 6B Wojcik et al, 2000 
7920205 SPRR2A small proline-rich protein 2A Radoja et al, 2006; Mischke et , 1996 
7947015 TSG101 tumor susceptibility gene 101 Oh et al, 2002 
*The literature was manually collected from Pubmed. 
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Table  5. Literature Support for the Granular- or Basal Stratum-specific 
Expression of the 72 Genes in Ectoderm Development (cont.) 
Transcript 
ID 

Gene 
Symbol 

Gene Name Reference* 

B. Basal Expressed Genes 
7936144 COL17A1 collagen, type XVII, alpha 1 Radoja et al, 2006 
7939341 CD44 CD44 molecule (Indian blood group) Kaya et al, 1997 
8067409 LAMA5 laminin, alpha 5 Tateishi et al, 2010 
7967685 STX2 syntaxin 2 Butt et al, 1996 
7950336 C2CD3 C2 calcium-dependent domain containing 3  
7924029 LAMB3 laminin, beta 3 Radoja et al, 2006 
8095907 FRAS1 Fraser syndrome 1 Pavlakis et al, 2008 
7991080 BNC1 basonuclin 1 Tseng, 1998 
8011759 PFN1 profilin 1 ubiquitously expressed 
8022176 LAMA1 laminin, alpha 1 Miner et al, 2004 
7938154 ILK integrin-linked kinase Lorenz et al, 2007 
7908072 LAMC2 laminin, gamma 2 Meng et al, 2003 
8137670 PDGFA platelet-derived growth factor alpha polypeptide Radoja et al, 2006 
8076757 CELSR1 cadherin, EGF LAG seven-pass G-type receptor 1  Devenport and Fuchs, 2008 
8165217 NOTCH1 Notch homolog 1, translocation-associated (Drosophila) Baldi et al, 2004 (suprabasal) 
8085475 WNT7A wingless-type MMTV integration site family, member 7A Radoja et al, 2006 
8054872 TFCP2L1 transcription factor CP2-like 1  
8013788 FLOT2 flotillin 2 Sasaki et al, 2008 (lipid 

rafts) 
7897803 PLOD1 procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 Radoja et al, 2006 
8072242 NF2 neurofibromin 2 (merlin) Stamenkovic and Yu, 2010 
8037537 ERCC2 excision repair cross-complementing, group 2  
8020551 LAMA3 laminin, alpha 3 Radoja et al, 2006 
8103822 VEGFC vascular endothelial growth factor C  
8015337 KRT15 keratin 15 Radoja et al, 2006 
7962000 PTHLH parathyroid hormone-like hormone Grone et al, 1994 
8105302 FST follistatin Mukhopadhyay et al, 2006 
*The literature was manually collected from Pubmed. 

Table 6. Significant Gene Ontology Terms Associated with the 1,298 Density-
upregulated EGF-responsive Genes 
Category Number of genes p-value 
Biological Process   

ectoderm development 46 7.88E-14 

epidermal cell differentiation 21 1.44E-08 
keratinization 13 8.67E-06 
lipid biosynthesis process 39 3.06E-04 

Cellular Component   
cornified envelope 8 3.63E-04 
intermediate filament cytoskeleton 24 7.89E-04 
late endosome 12 8.83E-04 

cell-cell junction 23 5.90E-03 
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EGF Decreases Free Fatty Acid (FFA) and Ceramide Biosynthesis 

Lipid organization is essential for the epidermal barrier function.  It plays an 

important role in cohesion and desquamation of the SC as well as in prevention of excess 

water loss from the human body and penetration of unwanted influences from the 

environment (Elias and Menon, 1991; Ponec and Weerheim, 1990). The major lipid 

components isolated from the cornified epidermal layers are ceramides (Cer), cholesterol, 

and free fatty acids (FFA).  The biosynthesis of these lipid classes requires the presence 

of many enzymes.  Hence, we studied the effect of EGF not only on all lipid classes in 

cultures of NHEKs, but also associated this effect with the changes in expression of 

genes encoding lipid biosynthetic enzymes.  The lipid biosynthesis process was enriched 

in the GO analysis (Table 6).  Moreover, using Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis, the sphingolipid metabolism pathway was also 

overrepresented (p-value = 0.008374) (Figure 6 and 8). This indicates that EGF may alter 

lipid components in epidermal keratinocytes. We explored this possibility by mining and 

validating the microarray expression profiles of genes encoding enzymes in the 

sphingolipid and free fatty acid biosynthetic pathways. Figure 9 highlights the effects of 

EGF from the microarray data on the expression of density-dependent genes in the 

KEGG sphinglolipid metabolism pathway, with 71% of the RNAs encoding enzymes in 

this pathway being significantly altered by EGF.  Cers found in the SC are generated via 

two pathways: (1) de novo synthesis which builds Cers from less complex molecules, and 

(2) the salvage pathway which breaks down more complex sphingolipids to release 

sphingosine, which is then re-acylated to form Cers (Figure 10).  These Cers are then 

packaged into lamellar bodies (LB) as glucosylCer (GlcCer) and sphingomyelin (SM).  
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Following extrusion of the LB at the intersection of SG and SC, the GlcCer and SM are 

hydrolyzed back to Cers (Uchida and Holleran, 2008).  We observed that EGF decreased 

expression of enzymes not only in the de novo pathway, but also in the salvage pathway.  

In the de novo synthesis, EGF decreased the expression of SPTLC3, a gene encoding for 

an enzyme catalyzing the rate limiting step of the pathway, LASS3, the gene encoding for 

the major epidermal dihydroceramide synthase, and DEGS2, the gene encoding for the 

major epidermal dihydrocermide desaturase/4-hydroxylase that produces the 

phytoceramides.  In the salvage pathway, EGF decreased the expression of SGPP2, 

ASAH1, ACER1, and LASS3 (Figure 10 and 11).  The expression of UGCG and SGMS2, 

enzymes which make GlcCer and SM from Cer, respectively (Uchida and Holleran, 

2008), was down-regulated by EGF (Figure 10 and 11).  Treatment with EGF showed no 

significant effect on the expression levels of GBA and SMPD3 (Figure 10).  qRT-PCR 

validated  all microarray expression profiles of other genes (SPHK1 and SPGL1) in the 

sphingolipid biochemical pathway (Figure 10), except the expression of SPGL1. These 

results suggest that ceramide production is significantly reduced as EGF regulates many 

biosynthetic enzymes including those catalyzing the rate limiting steps.  
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Figure 9. Sphingolipid Metabolism from the KEGG Pathway Database 
An overlay of genes in the list of 1,298 density-upregulated EGF-responsive genes on the 
KEGG sphinglolipid metabolism pathway (Figure 7). Transcripts for biosynthetic 
enzymes that are significantly affected by density from the microarray were selected to 
be studied for the effects of EGF.  Light green indicates down-regulation by EGF, while 
light red indicates up-regulation by EGF.  The star indicates a significant difference 
between control and EGF treated samples at 100% confluent cell density, using the 
Tukey-Kramer honestly significant difference test.   
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Figure 10. Sphingolipid Biochemical Pathways 
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Figure 10. Sphingolipid Biochemical Pathways (cont.) 
This pathway was constructed based on (Uchida and Holleran, 2008) and (Feng and 
Prestwich, 2005).  The initial condensation, catalyzed by SPTLC, is also the rate-limiting 
step for de novo synthesis, forming 3-ketodihydro-sphingosine (Hornemann et al., 2009).  
This product is then rapidly reduced to sphinganine, which is then acylated by a member 
of the LASS family of enzymes to form dihydroceramide.  LASS3 is the most relevant 
isozyme for ceramides of the epidermal barrier due to its fatty acyl-CoA chain length 
specificity (Stiban et al.).  Dihydroceramide is then desaturated by DEGS1/2 or 
hydroxylated by DEGS2 (exclusively), to form ceramides and phytoceramides, 
respectively.  Cer5 and Cer2 may also be formed via the salvage pathway by LASS 
acylation of sphingosine that is already present in the cell.  These reactions occur in the 
endoplasmic reticulum.  At this point, the pool of newly formed ceramides and 
phytoceramides are trafficked to the Golgi apparatus.  UGCG glycosylates all ceramides 
and phytoceramides to form glucosylceramides.  SGMS catalyzes the addition of choline 
phosphate (from phosphatidylcholine) to Cer5 and Cer2 to form sphingomyelin.  These 
two products (glucosylceramides and sphingomyelin) are packaged into the lamellar 
bodies, which are extruded at the intersection of the stratum granulosum and stratum 
corneum. 
Effects of EGF (relative fold changes) determined by qRT-PCR are shown. * indicates 
that the effects of EGF are significant by t-test (p < 0.05). 

 

We then investigated the next lipid component, FFA. We first built the FFA 

biochemical pathway based on the KEGG fatty acid biosynthesis pathway (Figure 12). 

The microarray expression of all enzymes in the FFA biochemical pathway was validated 

by qRT-PCR.  EGF inhibited 3 out of 4 major steps of fatty acid elongation as it down-

regulated the RNA levels of ELOVL3, ELOVL4, and ELOVL6 (condensation), PTPLB 

(dehydration), and TECR (reduction) significantly (Figure 13).  The down-regulation of 

PTPLB and TECR expression would lead to less stearic acid formation, which in turn 

restricts the production of oleic acid. These acids contribute about 50% to the fatty acid 

composition in the SC (Lampe et al., 1983).  Based on these results, we hypothesized that 

EGF could decrease total ceramide and FFA production in epidermal keratinocytes. 

To test our hypothesis, we used high performance thin-layer chromatography 

(HPTLC).  We observed that levels of cholesterol were unchanged, while levels of FFA  
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Figure 11. qRT-PCR Analysis of Transcripts Encoding Sphingolipid Biosynthetic 
Enzymes 
Validation of microarray expression profiles of genes encoding sphingolipid biosynthetic 
enzymes.   NHEKs were grown to either 50% or 100% confluent cell density before 
treatment with basal medium, or medium containing EGF (10 ng/ml) for 48 h, with the 
treatment medium being replaced once at 24 h .  † denotes comparison between the 
untreated samples (confluent density effect). * denotes the comparison between control 
and EGF at 100% confluent cell density. All bars indicate means ± SD (n = 3-4).  
Student’s t-test with Ŝidák-Bonferonni correction was used (where applicable) to evaluate 
statistical significance. ††p < 0.01, †††p < 0.001, *p < 0.0253 (Ŝidák-Bonferonni 
correction p-value cut off), **p < 0.01, ***p < 0.001. 
 

were reduced by 57%.  Several Cer species were also significantly decreased.  Inhibition 

of genes encoding for enzymes in the de novo and salvage ceramide pathways by EGF, as 

shown in the qRT-PCR results (Figure 10 and 11), corresponds to a decrease in some 6-

hydroxylated Cers, i.e. Cer7 and Cer8 (Figure 14).  EGF also reduced the production of 

acylGC, a product associated with expression levels of the Cer and GlcCer synthases 
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(LASS3, LASS4 and UGCG, respectively).  The 11% reduction in acylGC synthesis likely 

led to a decrease in Cer1 (Figure 14), a VLCFA containing Cer and the most abundant 

acylCer in the epidermis. Cer3 and Cer6 production were also diminished, corresponding 

with the inhibition by EGF of the expression of DEGS2 (Figure 11 and 14), the enzyme 

that makes phytoceramides (Ternes et al., 2002).  Our microarray and qRT-PCR suggests 

that the reduction of Cer7 is possibly due to the down-regulation of FA2H (Figure 11), 

the enzyme that produces the 2-hydroxylated ceramides (Uchida et al., 2007). 

 

 

Figure 12. The Free Fatty Acid Biosynthetic Pathway 
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Figure 12. The Free Fatty Acid Biosynthetic Pathway (cont.) 
This pathway was constructed based on the KEGG pathway for FFA synthesis combined 
with one cycle through the four enzymes that catalyze the four consecutive reactions of 
fatty acid elongation (Jakobsson et al., 2006).  Initial fatty acid synthesis, catalyzed by 
FASN occurs in the cytosol; elongation occurs in the ER.  The initial step of elongation is 
catalyzed by the ELOVL family of enzymes, and is also the rate-limiting step (Jump, 
2009).  The majority of the fatty acids present in the epidermal barrier are elongated by 
ELOVL3 and ELOVL6.  ELOVL1 and ELOVL4 catalyze the elongation of the very long 
chain fatty acid present in the ceramides of the epidermal barrier (Ohno et al.).  
Additionally, FA2H (not shown in this figure) hydroxylates FFA to form 2-OH FFA.  
These 2-OH FFA are part of the pool of FFA that are acylated to sphingoid bases to form 
ceramides as discussed in Figure 10.  Ceramides containing 2-OH FFA include Cer7, 
Cer6, and Cer5, and are critical for proper formation of the epidermal barrier (Uchida et 
al., 2007).  Effects of EGF (relative fold change) determined by qRT-PCR are shown.  
KS, keto acylsynthase; ACP, acyl carrier protein. * indicates that the effects of EGF are 
significant by t-test (p < 0.05). 
 

 

 
 
Figure 13. qRT-PCR Analysis of Transcript Encoding FFA Biosynthetic Enzymes 
Validation of microarray expression profiles of genes encoding FFA biosynthetic 
enzymes.  NHEKs were grown to either 50% or 100% confluent cell density before 
treatment with basal medium, or medium containing EGF (10 ng/ml) for 48 h, with the 
treatment medium being replaced once at 24 h. † denotes comparison between the 
untreated samples (confluent density effect).  * denotes the comparison between control 
and EGF at 100% confluent cell density.  All bars indicate means ± SD (n = 3-4).  
Student’s t-test with Ŝidák-Bonferonni correction was used (where applicable) to evaluate 
statistical significance. ††p < 0.01, †††p < 0.001, *p < 0.0253 (Ŝidák-Bonferonni 
correction p-value cut off), **p < 0.01, ***p < 0.001. 
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Figure 14. EGF Decreases FFA and Total Ceramide Amount 
Densitometric measurements (left) of TLC plates (right).  NHEKs were grown to 100% 
confluent cell density before basal medium or medium with EGF (10 ng/ml) was added. 
The media was replaced with fresh basal media containing the same treatments after 24 h 
in the presence of 1.8 mM Ca2+.  Lipids were extracted 48 h after the last media change.  
CHOL, cholesterol; FFA, free fatty acid. The ceramide structures are classified according 
to the sphingoid base (S: sphingosine; P: phytosphingosine; H: 6-hydroxysphingosine) 
and the N-acyl fatty acid (A: α-hydroxy group, O: ω-hydroxy group, E: acylated in the ω-
OH position). All bars indicate means ± SD (n = 3).  * p < 0.05; ** p < 0.01, *** p < 
0.001. Standards (0.2 µg/µl each) (right panel) for cholesterol (CHOL) and linoleic acid 
(FFA), ceramide NS (Cer2), ceramide AP (Cer6), and glucosylceramide (GC) were used. 
Assignment of lipid bands is described in details in Chapter 2. On the TLC plate, STD, 
standard; - EGF, control; + EGF, treatment with EGF (10 ng/ml). Note: semi-synthetic 
enanpiomeric mixtures were used as standards for Cer6 and for GC. 

 

EGFR Signaling Inhibits Cornified Envelope Competence 

The CE structure is formed beneath the plasma membrane of the corneocytes, the 

terminally differentiated keratinocytes.  These structures are covalently bound to Cer 

lipids in order to provide the effective physical and water barrier functions of the skin. 

CE formation requires deposition of many proteins that are catalytically cross-linked by 

the TGM1 enzyme (Elias et al., 2000). The CE was the first cellular component enriched 
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by GO analysis (p-value = 3.64E-04) (Table 6). This observation led us to investigate the 

effect of EGF on genes in this category as well as other genes encoding proteins involved 

in the CE formation. We identified 76 density-upregulated genes that contributed to CE 

synthesis in epidermal keratinocyte, based on the published literature (Appendix A). Of 

these genes, EGF significantly altered mRNA levels of 45 of the identified genes 

including genes encoding TGMs, SPRRs, late cornified envelope (LCEs), and S100s.  

These proteins are known to be the primary proteins participating in the synthesis of CE 

(Candi et al., 2005). The expression profiles of TGM1, LOR, KRT10, KRT1, and FLG 

were validated by qRT-PCR (Figure 8B and 15). The results of this analysis were 

consistent with previous studies (Drozdoff and Pledger, 1993; Marchese et al., 1990; 

Poumay and Pittelkow, 1995), suggesting a reliable effect of EGF on the 40 novel genes 

identified as EGF regulated in this study.  

We further confirmed our microarray data by protein immunoblotting analysis. 

Cornified envelopes consist of keratins that are enclosed in insoluble proteins that are 

grouped into bundles by FLG (Candi et al., 2005).  Hence, we wanted to determine 

whether EGF activated the EGFR to lower the protein levels of KRT1 and FLG by using 

PD153035, a specific and potent EGFR tyrosine kinase inhibitor. In concordance with the 

microarray and qRT-PCR data, EGF significantly reduced the levels of proFLG, a 

precursor of FLG, and KRT1 proteins (Figure 16A). This effect was attenuated by the 

EGFR inhibitor, PD153035. The significant induction of these two proteins in the 

presence of the inhibitor alone indicates the presence of basal EGFR signaling 

(Figure16A), possibly activated by TGF-α, an endogenous ligand of EGFR in 
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Figure 15. qRT-PCR of Selected Genes Encoding CE Proteins 
Validation of microarray expression profiles of some well known CE genes.  NHEKs 
were grown to either 50% or 100% confluent cell density before treatment with basal 
medium, or medium containing EGF (10 ng/ml) for 48 hr, with the treatment medium 
being replaced once at 24 hr (n = 3-4).  Results are expressed as relative expression from 
values obtained in response to samples grown to 50% confluent cell density without EGF 
normalized to values obtained with TUBA1C.  Bars represent means ± SD (n = 3-4). † 
denotes comparison between the untreated samples. * denotes the comparison between 
control and EGF at 100% cell density. *p < 0.0253 (cuf off p-value after Ŝidák-
Bonferroni correction), **p < 0.01, †p < 0.0253 (cut off p-value after Ŝidák-Bonferroni 
correction), ††p < 0.01, ††† p < 0.001 by t-test. 

 

keratinocytes (Coffey et al., 1987).  Since activation of EGFR remarkably affected the 

level of proteins forming the CE, we examined this signaling effect on CE competence. 

Consistent with other studies (Monzon et al., 1996; Sun and Green, 1976), EGF caused a 

significant decrease in the percentage CE (Figure 16B). However, this reduction was 

reversed by PD153035, indicating that EGF worked through EGFR signaling to inhibit 

CE synthesis. These data together with the expression and protein analysis results 

strongly support the idea that EGFR activation inhibits CE formation by altering levels of 

enzymes and structural proteins essential for the synthesis of this differentiated structure. 
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Figure 16. EGFR Signaling Inhibits CE Competence 
The effects of EGFR signaling on CE proteins and competence. 
(A) Densitometry (above) of immunoblots (below) of Profilaggrin (ProFLG) and keratin 
1 (KRT1). ACTB is a loading control. NHEKs were grown to confluence and pretreated 
with 0.1% DMSO or PD153035 (300 nM) 2 hours before treatment.  Basal medium with 
or without EGF (10 ng/ml) was added in the presence of 0.1% DMSO or PD153035 (300 
nM). The media was replaced with fresh basal media containing the same treatments after 
24 h. Cell lysates were harvested 24 h after the last media change (n = 3).   
(B) EGF effects on CE competence. NHEKs were grown and treated as described in (A).  
CEs were isolated 3 days after the last media change (n = 3). 
All bars denote mean ± SD. One-way ANOVA followed by Tukey’s Multiple 
Comparison Test was performed.  If there are different letters in two groups of a 
comparison, the means of these two groups are significantly different.
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EGF Disrupts Tight Junction (TJ) Barrier Function 

Cell-cell adhesion was enriched by GO analysis (p-value = 0.0059) (Table 6). In this 

category we found desmosomal, gap junction, and tight junction (TJs) genes.  Recently, 

evidence has been presented that components of intercellular junctions, i.e. TJs, are 

crucial for the development of the barrier function in the skin.  Defects in TJ are observed 

in patients with AD (De Benedetto et al., 2011).   However, to our knowledge there has 

not been a study of the effects of EGF on tight junction barrier function in NHEKs. First, 

we validated the mRNA levels of TJ genes by qRT-PCR and found that EGF 

significantly suppressed the expression of CLDN1, CLDN16, and TJP1 (Figure 17). Mice 

lacking the CLDN1 gene show rapid postnatal lethality due to impaired TJ barrier 

function, leading to excessive transepidermal water loss (TEWL) across the skin (Furuse 

et al., 2002).  TJP1, the first TJ component identified, is an intracellular membrane 

scaffolding protein important for TJ structure and assembly (Stevenson et al., 1986).  We 

therefore investigated the effect of EGF (10 ng/ml) on protein levels of CLDN1 and TJP1 

by immunoblot.  Treatment with EGF caused a significant decrease in the levels of these 

two proteins (Figure 18A).  This result was confirmed using indirect immunofluoresence. 

In untreated cultures, we observed that CLDN1 and TJP1 distributed around the 

circumference of each cell at the apex of lateral membranes. CLDN1 colocalized with 

TJP1 at areas of cell-cell contact. The staining of these two proteins was reduced 

substantially in cultures treated with EGF (Figure 18B).  These results indicate that EGF 

inhibits the formation of the TJs, suggesting an increase in paracellular permeability of 

the barrier.  
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To determine the effect of EGF on TJ barrier function, we measured transepidermal 

electrical resistance (TER) and paracellular tracer flux in NHEKs. The TER reflects the 

transepithelial permeability of water-soluble ions and is a sensitive measure of barrier 

integrity.  A higher TER indicates a lower permeability across a membrane.  The TER of 

the control cultures was measured at 48, 72, and 96 h. The resistance increased 3-fold at 

72 h compare to 48 h and remained unchanged at 96 h from the 72 h level (Figure 18C), 

suggesting a much improved and stabilized permeability barrier function starting at 72 h.  

However, when EGF was present, this permeability barrier function was significantly 

disrupted, as indicated by lower TER readings at every time point (Figure 18C). 

Consistent with the TER results at each time point, a significant increase in the flux of 

dextrans was observed in the EGF-treated NHEKs compared to untreated ones (Figure 

18D), indicating that EGF treatment results in a leaky barrier.  The paracellular 

permeability of TJs exhibits a strong size selectivity, which distinguishes the paracellular 

route from the transcytosis route.  Hence, different sizes of dextran molecules, 3 kDa and 

40 kDa, were used to demonstrate the size selectivity of the TJ barrier.  We demonstrated 

that fewer 40 kDa molecules diffused across the membrane compared to the 3 kDa 

dextran molecules, and that EGF increased the flux of both sizes of dextran molecules 

across the TJ barrier (Figure 18D).  Together, these results indicate that EGF disrupts the 

permeability barrier function by inhibiting the levels of membrane proteins that form the 

TJs in cultures of NHEKs. 
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Figure 17. qRT-PCR of Genes Encoding Tight Junction Proteins 
Validation of microarray expression profiles of genes encoding TJ proteins.  NHEKs 
were grown to either 50% or 100% confluent cell density before treatment with basal 
medium, or medium containing EGF (10 ng/ml) for 48 hr, with the treatment medium 
being replaced once at 24 hr.  Results are expressed as relative expression from values 
obtained in response to samples grown to 50% confluent cell density without EGF, and 
normalized to the values obtained with tubulin alpha (TUBA1C).  Expression of mRNAs 
from the control is set to 1.  Bars represent means ± SD (n = 3-4). † denotes comparison 
between the untreated samples. * denotes the comparison between control and EGF at 
100% confluent cell density. *p < 0.0253 (cut off p-value after Ŝidák-Bonferroni 
correction), **p < 0.01, †p < 0.0253 (cut off p-value after Ŝidák-Bonferroni correction), 
††p < 0.01, ††† p < 0.001 by t-test.
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Figure 18. EGFR Signaling Disrupts Tight Junction Barrier Function in Epidermal 
Keratinocytes 
The effects of EGF on TJ barrier function. 
 (A) Densitometric measurements (left) of junctional protein immunoblots for CLDN1 
and TJP1 (right).  ACTB is a loading control.  NHEKs were grown to confluence before 
switching to basal medium with or without EGF (10 ng/ml) in the presence of 1.8 mM 
Ca2+.  The media was replaced with fresh basal media containing the same treatments 
after 24 h.  Cell lysates were harvested 72 h after the last media change (n = 3). 
(B) Indirect immunofluorescence of CLDN1 and TJP1 in the presence or absence of EGF 
(n = 3).  NHEKs were grown as described in (A).  Representative immunofluorescent 
micrographs of the control and EGF (10 ng/ml) treated monolayers are shown.  Scale bar, 
50 µm.  
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Figure 18. EGFR Signaling Disrupts Tight Junction Barrier Function in Epidermal 
Keratinocytes (cont.) 
(C) Transepithelial electrical resistance (TER) of keratinocytes grown on Transwell® 
filters.  NHEKs were seeded at confluence (94,000 cells/insert) and incubated overnight 
before switching to basal medium or medium with EGF (10 ng/ml) in the presence of 1.8 
mM Ca2+.  The media was replaced with fresh basal media containing the same 
treatments after 24 h.  TER was measured 48, 72, and 96 h after EGF treatment (n = 6). 
(D) Paracellular permeability as measured by 3- and 40-kDa dextran flux across the 
samples in (C) above.  
All bars represent means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001. Student’s t-test was 
used to evaluate statistical significance in (A)-(C). 
 

 
EGF Impairs the Epidermal Barrier Integrity and Pre ferentially Regulates Genes 

Associated with Skin Diseases 

One of the most important functions of the epidermal barrier is to prevent excessive 

water loss.  To acquire this function, the epidermis requires a permeability barrier 

together with competent cornified envelopes that are covalently bound to a well 

organized lipid matrix.  To demonstrate the effect of EGF on epidermal barrier function 

as a whole, we measured TEWL in organotypic cultures.  The TEWL of control cultures 

was 64 ± 7.4 g/m2·h, similar to what was reported previously (Nolte et al., 1993). EGF 

caused a 29% increase in the rate of TEWL compared to control cultures (Figure 19A). 

This increase was accompanied by changes in epidermal morphology. Large basal cells 

and a less stratified SC with substantial nuclear retention were observed in the EGF-

treated cultures (Figure 19B), consistent with a previous study (Chen et al., 1995b). 

These results demonstrate that EGF impairs the epidermal barrier integrity and function, 

significantly increasing TEWL.  

Defective epidermal differentiation and disruption of epidermal barrier function are 

primary features of many skin diseases. EGFR signaling plays a relevant role in the 

control of skin inflammation.  Abnormally high levels of the EGFR are observed in 
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chronic inflammatory skin disorders including psoriasis (Sergi et al., 2000), atopic 

dermatitis and allergic contact dermatitis (Mascia et al., 2003).  Hence, we hypothesized 

that EGF would alter expression of genes that are mis-regulated in skin disorders.  Using 

Ingenuity Pathway Analysis, Chilibot, and GeneIndexer, we identified 114 EGF-

regulated genes associated with skin diseases from the list of 1,298 density-upregulated 

EGF-responsive genes (Appendix B and Figure 7).  In parallel, we identified 43 EGF-

nonregulated genes associated with skin diseases from the list of 967 density-upregulated 

EGF-nonresponsive genes (Figure 18C).  Hence, we tested the null hypothesis that there 

is no assocication between treatments (control versus EGF) and the number of skin 

diseases genes regulated by these treatments.  In order to test this hypothesis, the Fisher’s 

exact test was used and the two tail p-value obtained from the test was 5.31E-5.  This p-

value indicates that the null hypothesis should be rejected and that there is a strong 

association between known skin disease genes and the different treatments.  In addition, 

the association tends to lie in the 114 known skin diseases and the set of EGF-responsive 

genes (Figure 18C). Among the 114 skin disease genes, we found 11 genes that are 

essential for the development of epidermal barrier function in mice (Appendix B).  Figure 

19D shows qRT-PCR results of the two transcription factors (KLF4 and GATA3) and two 

ichthyosis genes (ALOX12B and ABCA12) that are in the list of essential genes. 

Consistent with the expression data, the protein level of KLF4 was significantly inhibited 

by EGF (Figure 19E).  qRT-PCR validated the expression profiles of 91% of the 11 

essential genes (Figure 19D and Figure 20), affirming the preferential effect of EGF on 

important skin disease-related genes.  Taken together, these results indicate that EGF 

impairs epidermal barrier function, thus making the skin more prone to many types of 
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disease by altering the expression of genes and proteins that contribute to these skin 

diseases. 

 

 
 
Figure 19. EGF Impairs Epidermal Barrier Integrity and Preferentially 
Regulates Genes Involved in Skin Diseases 
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Figure 19. EGF Impairs Epidermal Barrier Integrity and Prefere ntially Regulates 
Genes Involved in Skin Diseases (cont.) 
Effects of EGF on epidermal barrier integrity as a whole. 
(A) EGF increases TEWL of organotypic skin cultures (n = 6). Cultures were incubated 
with or without EGF (20 ng/ml) throughout the 14 days of air exposure.  
(B) EGF induces abnormal keratinocyte morphology as shown by histology (hematoxylin 
and eosin) of the organotypic cultures from (A). Scale bar, 20 µm.  
(C) EGF preferentially regulates genes known to be associated with skin diseases. *The 
Fisher’s exact test was used to determine if there was a significant association between 
genes related to skin diseases and EGF (p-value = 5.31E-5).  
(D) EGF decreases mRNA levels of genes that are essential for the development of 
epidermal barrier function in mice (n = 3-4).  Results are expressed as relative expression 
from values obtained in response to samples grown to 50% confluent cell density without 
EGF normalized to values obtained with TUBA1C. † denotes comparison between the 
untreated samples. * denotes the comparison between control and EGF at 100% confluent 
cell density. Two-way ANOVA followed by Bonferroni post-tests were used to evaluate 
statistical significance. Additional essential genes are shown in Figure 20.   
(E) Densitometry (above) of KLF4 immunoblot (below) (n = 3). Densitometry of control 
samples are set to 1.  ACTB is a loading control.  NHEKs were grown to confluence 
before basal medium or medium with EGF (10 ng/ml) was added. The media was 
replaced with fresh basal media containing the same treatments after 24 h.  Cell lysates 
were isolated 24 h after the last media change (n = 3). 
All bars represent means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001. Student’s t-test was 
used to evaluate statistical significance in (A) and (E).
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Figure 20. qRT-PCR of Genes that are Essential for the Development of 
Epidermal Barrier Function 
Validation of microarray expression profiles of genes that are essential for the 
development of epidermal barrier function in mice.  NHEKs were grown to either 
50% or 100% confluent cell density before treatment with basal medium, or medium 
containing EGF (10 ng/ml) for 48 h, with the treatment medium being replaced once 
at 24 h (n = 3-4). Results are expressed as relative expression from values obtained 
in response to samples grown to 50% confluent cell density without EGF normalized 
to values obtained with tubulin alpha (TUBA1C).  Bars represent means ± SD.  † 
denotes comparison between the untreated samples. * denotes the comparison 
between control and EGF at 100% confluent cell density. Two-way ANOVA 
followed by Bonferroni post-tests were used to evaluate statistical significance. *p < 
0.05, **p < 0.01, ††p < 0.01, ††† p < 0.001. 
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IDENTIFICATION OF EGFR-DIRECTED TRANSCRIPTIONAL NET WORKS 

THAT REGULATE THE HOMEOSTASIS OF EPIDERMAL KERATINO CYTES 

Microarray Analysis and Data Mining  

Our previous studies of NHEKs, demonstrated by genome-wide microarray, 

functional, biochemical, and morphological data that the presence of EGF impairs 

epidermal differentiation and barrier function via disrupting lipid biosynthesis, CE, and 

TJ formation.  In this second study, we wanted to further explore the molecular 

mechanisms underlying these inhibitory effects of EGFR signaling in NHEKs.  We 

performed global gene expression analysis of EGF treated cells in a time series (t0, 1, 2, 4, 

8, 16 and 24 h post EGF treatment) using the Affymetrix GeneChip™ Human Genome 

U133 Plus 2.0 chip, which contains approximately 38,500 annotated genes.  In this 

analysis, 7,819 genes were up- or down-regulated by EGF by at least 2.6-fold (Figure 21).  

Among these, EGF significantly alters the levels of RNA of 3,033 genes (about 39% of 

those selected).  These genes were then clustered using mFuzz, a soft clustering 

algorithm (Kumar and Matthias, 2007).  mFuzz produced 9 different clusters (Figure 22).  

Genes in these clusters were then grouped into 2 groups: intermediate and late responsive 

genes.  Intermediate responsive genes were those that were affected by EGF at 4 and/or 

8- 16 h, but not at 24 h (cluster 1, 4, 6, and 7 in Figure 22).  Genes that have a sustained 

EGF effect until 24 h are considered late responsive genes (cluster 2, 3, 5, 8, and 9 in 

Figure 22).  In this dataset, we found 1,238 intermediate responsive genes, 1,795 late 

responsive genes, and did not identify any early genes. 
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Figure 21. Diagram of the Gene Expression Data Analysis Workflow for 
Microarray 2 
On the HG-U133 Plus 2.0 arrays, a gene can be represented by one or more probe 
sets. This diagram describes in detail the statistical analysis for the microarray 
dataset and other bioinformatics analyses used to identify transcriptional regulators.  
To determine the regulatory network underlying EGF effects, we identified genes 
encoding for proteins involved in the transcriptional regulation using GeneIndexer 
analysis with keywords such as “transcription factor, activator, coactivator, 
repressor, corepressor, coactivator, regulators, and chromatin structures”.  This 
allowed us to identify 245 transcriptional regulators.  Among these 245 genes, we 
identified 32 transcriptional regulator genes known to be associated with the 
epidermis, using GeneIndexer (Homayouni et al., 2005).  In order to cluster the 
3,033 EGF-regulated genes, we used the mFuzz method that is implemented in the 
maSigPro package (Conesa et al., 2006). 
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Figure 22. Clusters Produced by mFuzz Algorithm 
The 3,033 significant genes were clustered using mFuzz.  Probe sets in clusters 1, 4, 6, 
and 7 are considered to be intermediate responsive probe sets.  The genes in these 
clusters respond maximally to EGF at 4 or 8 h, but do not respond to EGF at 24 h.   
Probe sets in clusters 2, 3, 5, 8, and 9 are considered to be late responsive probe sets.  
The genes in these clusters respond to EGF starting at 8 h and continue to respond to 
the treatment up to 24 h.  The effect of the control and EGF conditions is shown in red 
and green, respectively.  Dashed lines indicate best fitted curve for the data, while 
straight lines show the connection of the mean at each time point.   The expression 
value is log base 2. 
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EGF Influences Keratinocyte Cell Fate Through a Complex Transcriptional 

Regulatory Network  

Our previous work provides preliminary evidence that EGF controls keratinoctye cell 

fate by affecting the expression of genes responsible for the basal and suprabasal cell 

phenotypes via the regulation of multiple pro-differentiation TFs and signaling molecules 

(Chapter 3).  Consistent with our previous microarray (Figure 23) and qRT-PCR (Figure 

24) results, EGF down-regulated the RNA levels of differentiation markers that are well 

established to be expressed in the suprabasal layers (KRT1 and FLG) and up-regulated 

RNA levels of proliferation markers that are expressed in the basal layer (ITGB4 and 

BNC1).  To determine the regulatory network underlying these EGF effects, we identified 

genes encoding for proteins involved in the transcriptional regulation using GeneIndexer 

analysis with the keywords “transcription factor, activator, coactivator, repressor, 

corepressor, coactivator, regulators, and chromatin structures” (Figure 21).  This allowed 

us to identify 245 transcriptional regulators (Appendix C) from the list of 3,033 

significant genes.   Table 7 shows a subset of potentially important transcriptional 

regulators in keratinocyte differentiation, based on the observation that their expression 

levels were up- or down-regulated by EGF by at least 10-fold.  We believe that these 

genes may have important biological roles in keratinocyte differentiation, as they 

responded strongly to the EGF treatment.  Interestingly, the majority of these genes 

responded most effectively to EGF starting at 8 h or beyond, suggesting that they may be 

regulated by additional immediate early genes.  Among these 245 genes, we identified 32 

genes whose functions are known to be involved in the proliferation or differentiation of 

keratinocytes (Figure 21 and Table 8).   Intriguingly, EGF down-regulated the RNA 
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levels of 86% of the differentiation regulators and up-regulated the expression of 80% of 

the known regulators  

 

 

 
Figure 23. Microarray Profiles of EGF-regulated Genes that are Responsible 
for the Basal and Suprabasal Cell Phenotypes 
Microarray profiles of suprabasal genes (KRT1 and FLG) and basal genes 
(ITGB4 and BNC1).  NHEKs were grown to 100 % confluent cell density before 
receiving a last feed.  After 48 h of last feed, cells were treated with or without 
EGF (10 ng/ml) in basal medium for 0, 1, 2, 4, 8, 16, and 24 h.  Red indicates 
control samples while green indicates EGF treated samples (n = 3). 
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of proliferation (Table 8, Figure 25-27 and Figure 29-31).  qRT-PCR results validated the 

expression profiles of 78% of the 32 transcriptional regulators (Figure 28 and 32).  Based 

on the mFuzz clustering results, these genes were grouped into intermediate and late 

genes.  We noticed that there was an equal amount of pro-differentiation and proliferation 

genes in each cluster (Table 8), indicating that EGF affects keratinocyte proliferation and 

 
 

Figure 24. EGF Affects the Expression of Genes Responsible for the Basal and 
Suprabasal Cell Phenotypes 
Validation of microarray expression profiles of the genes in Figure 23.  These genes were 
selected to confirm the effects of EGF on the expression of basal and suprabasal-specific 
genes identified in microarray experiment 1.  NHEKs were grown to 100 % confluent cell 
density before receiving a last feed.  After 48 h of last feed, cells were treated with or 
without EGF (10 ng/ml) in basal medium for 0, 1, 2, 4, 8, 16, and 24 h.  Results are 
expressed as relative expression from values obtained in response to the t0 sample. Bars 
represent means ± SD (n = 3).  Two-way ANOVA with Bonferroni post-tests was used to 
evaluate significant difference. *p < 0.05, **p < 0.001, ***p < 0.0001. 
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differentiation simultaneously.  Based on these results, we improved a proposed dynamic 

model of epidermal homeostasis (Okuyama, 2004) to form an integrated model that 

reveals the regulatory action of EGF in this process (Figure 33).  In this model, EGF 

suppresses genes (in green) that promote differentiation and induces genes (in red) that 

promote proliferation of keratinocytes. These results support and expand on the 

recognition of EGFR signaling as a key regulator of keratinocyte cell fate, affecting the 

transition between growth arrested reversible cells and transit amplifying cells, affecting 

k-2 in Figure 33 by inhibiting and inducing the transcription factors (TFs) that regulate 

differentiation and proliferation, respectively. 

Table 7. Literature Supporting the Transcriptional Regulatory Roles of Genes 
That Are Up- or Down- Regulated by EGF by At Least 10 Fold at Any Time Point  

Probe Set 
Gene 

Symbol 
Type 

Role in cell 
development 

EGF 
MAX 
FC1 

EGF 
MIN 
FC2 

Hr 
MAX 
FC3 

Hr 
MIN 
FC4 

Reference 

221011_s_at LBH activator  159.74  16 h  Briegel and 
Joyner, 2001 

204420_at FOSL1 TF  77.30  8 h  Finzer et al, 
2000 

228964_at PRDM1 repressor Differentiation 34.29  4 h  Magnusdottir 
et al, 2007 

202768_at FOSB TF  33.03  2 h  Ulery et al, 
2006 

228033_at E2F7 repressor Proliferation 30.66  8 h  Endo-Munoz, 
et al, 2009 

206877_at MXD1 repressor  29.95  4 h  Grandori et al, 
2000 

202935_s_at SOX9 TF  27.98  16 h  Pan et al, 2008 
206127_at ELK3 repressor  24.38  16 h  Wasylyk et al, 

2005; Chen et 
al, 2003 

209189_at FOS TF Proliferation 24.33  4 h  Ulery et al, 
2006 

209878_s_at RELA TF Inhibit 
proliferation 

17.64  16 h  Ghosh and 
Karin, 2002 

36711_at MAFF TF Proliferation 15.58  8 h  Motohashi et 
al, 2004 

229404_at TWIST2 repressor Differentiation  13.90  16 h  Lee et al, 2003; 
Isenmann et al, 

2009 
1EGF Max FC: maximum fold change observed by EGF over the entire treatment time. 
2EGF Min FC: minimum fold change observed by EGF over the entire treatment time. 
3Hr Max FC: the time point at which the maximum EGF fold change was observed  
4Hr Min FC: the time point at which the minimum EGF fold change was observed.
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Table 7. Literature Supporting the Transcriptional Regulatory Roles of Genes 
That Are Up- or Down- Regulated by EGF by At Least 10 Fold at Any Time Point 
(Cont.) 

Probe Set 
Gene 

Symbol 
Type 

Role in cell 
development 

EGF 
MAX 
FC1 

EGF 
MIN 
FC2 

Hr 
MAX 
FC3 

Hr 
MIN 
FC4 

Reference 

226319_s_at LOC64481
1 /// 

THOC4 

coactivator  12.26  16 h  Mertz et al, 
2007 

211834_s_at TP63 Activator 
repressor 

11.58  16 h  Yang et al, 
1998; Senoo 
et al, 2007; 
Zhu et al, 

2007 
224833_at ETS1 TF Proliferation 11.13  8 h  Jung et al, 

2005 
220625_s_at ELF5 activator Differentiation  -29.70  24 h Choi and 

Sinha, 2006; 
Metzger et al 

2008 
210239_at IRX5 TF Differentiation  -15.05  8 h Kerschenstei

ner et al, 
2008 

212148_at PBX1 TF Differentiation  -50.88  24 h Van Dijk et 
al, 1993 

201566_x_at ID2 /// 
ID2B 

repressor Proliferation  -11.54  4 h Murphy et 
al, 2004 

219551_at EAF2 activator Differentiation   -11.40  8 h Xiao et al, 
2006; Jiang 
et al, 2007; 

Maurus et al, 
2005 

207826_s_at ID3 corepressor Differentiation  -13.90  4 h Deed et al, 
1993 

229638_at IRX3 TF Differentiation   -10.58  8 h Bilioni et al, 
2005; Gan et 

al, 2007 
204069_at MEIS1 TF Differentiation  -15.96  8 h Wang et al, 

2006 
207469_s_at PIR TF   -11.73  24 h Pang et al, 

2004 
223275_at PRMT6 chromatin 

structure 
  -15.03  24 h Miranda et 

al, 2005; 
Hyllus et al, 

2007 
226872_at RFX2 TF Differentiation  -15.30  8 h Horvath et 

al, 2004 
228038_at SOX2 activator Differentiation  -11.43  8 h Sharov et al, 

2008 
222146_s_at TCF4 TF Differentiation  -16.36  8 h Nguyen et 

al, 2009 
222016_s_at ZNF323 TF   -26.86  16 h Pi et al, 2002 
1EGF Max FC: maximum fold change observed by EGF over the entire treatment time. 
2EGF Min FC: minimum fold change observed by EGF over the entire treatment time. 
3Hr Max FC: the time point at which the maximum EGF fold change was observed  
4Hr Min FC: the time point at which the minimum EGF fold change was observed. 
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Table 8. Literature Supporting the 32 Transcriptional Regulators Known to Be 
Associated with Keratinocyte 
Probe Set Gene 

Symbol 
EGF 
MAX 
FC1 

EGF 
MIN 
FC2 

Type of 
transcript-tional 
regulation 

Role in 
keratinocyte 
development 

Reference3 

209878_s_at RELA 17.645 -4.628 TF Inhibits 
proliferation 

Seitz et al, 2000 

210993_s_at SMAD1 -1.049 -3.739 TF/activator Inhibits 
proliferation 

He et al, 2001 

203313_s_at TGIF1 3.5119 1.4239 corepressor of 
SMAD2 

Inhibits 
proliferation 

Wotton et al, 
1999; (Bartholin et 
al., 2008; Lo et al, 

2001) 
203140_at BCL6 1.095 -5.005 TF/repressor Differentiation Yoshida et al, 

1996; (Shen et al, 
2008) 

212420_at ELF1 1.3569 -2.755 TF/activator Differentiation (Oettgen et al, 
1997); Oettgen et 

al, 1996 
220625_s_at ELF5 -1.026 -29.7 TF/activator Differentiation (Oettgen et al, 

1999); Choi and 
Sinha, 2006; 

Metzger et al 2008 
 FOXN1   TF Differentiation Janes et al, 2004; 

Schlake et al, 2000 
203394_s_at HES1 2.4871 -1.526 TF/repressor Differentiation Nguyen et al, 

2006; (Sang et al, 
2008) 

210239_at IRX5 -1.148 -15.05 TF Differentiation Houweling et al, 
2001; 

(Kerschensteiner 
et al, 2008) 

223218_s_at NFKBIZ 1.2235 -3.005 TF/activator Differentiation  Oonuma et al, 
2007; Shiina et al, 
2004; (Kitamura et 
al, 2000; Trinh et 

al, 2008) 
218902_at NOTCH1 1.1415 -2.735 TF Differentiation Nguyen et al, 2006 
212148_at PBX1 1.2079 -50.88 TF/activator Differentiation Komuves et al, 

2000; (Lu et al, 
1994) 

207109_at POU2F3 3.4036 -4.888 TF Differentiation Sugihara et al, 
2001; Shiina et al, 
2004; Beck et al, 

2007; Cabral et al, 
2003 

228964_at PRDM1 34.286 2.1633 TF/repressor Differentiation Magnusdottir et al, 
2007; (Martins et 

al, 2008) 
218284_at SMAD3 2.6209 -1.12 TF/activator Differentiation Ashcroft et al, 

1999; Descargues 
et al, 2008; 

Flanders et al, 
2002 

204341_at TRIM16 
/// 

TRIM16L 

2.6824 1.0004 coactivator Differentiation Beer et al, 2002; 
Raif et al, 2009 

1EGF Max FC: maximum fold change observed by EGF over the entire treatment time. 
2EGF Min FC: minimum fold change observed by EGF over the entire treatment time. 
3The literature was manually collected from Pubmed. 
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 Table 8. Literature Supporting the 32 Transcriptional Regulators Known to Be 
Associated with Keratinocyte (cont.) 
Probe Set Gene 

Symbol 
EGF 
MAX 
FC1 

EGF 
MIN 
FC2 

Type of 
transcript-

tional 
regulation 

Role in 
keratinocyte 
development 

Reference3 

210319_x_at MSX2 -1.075 -6.691 TF/repressor Differentiation 
(Overexpression 
of MSX2 causes 

the skin to 
become 

hyperkeratotic) 

Jiang et al, 1999 

1554980_a_at ATF3 3.2036 1.001 corepressor, 
repressor of 

Nrf2 

Proliferation Wang et al, 2007; 
(Zhang et al, 2002) 

1552487_a_at BNC1 4.8369 1.3962 TF Proliferation Tseng and Green, 
1994; (Zhang and 

Tseng, 2007) 
1554411_at CTNNB1 7.1994 1.281 coactivator Proliferation Zhu and Watt, 1999 
228033_at E2F7 30.665 1.142 TF/repressor Proliferation Endo-Munoz et al 

2009; (Li et al, 
2008) 

224833_at ETS1 11.131 1.3979 TF Proliferation Nagarajan et al, 
2009 

209189_at FOS 24.328 -2.458 TF Proliferation (c-
Fos is assumed 
to be absent in 
late stages of 
keratinocyte 

differentiation) 

Mehic et al, 2005; 
Mils et al, 1997 

201566_x_at ID2 /// 
ID2B 

1.0944 -11.54 TF/repressor Proliferation Murphy et al, 2004; 
(Boos et al, 2007; 
Moskowitz et al, 

2007) 
201465_s_at JUN 3.1353 1.1422 TF Proliferation Shinoda and Huang, 

1995 
1555832_s_at KLF6 9.6018 1.4543 TF/activator Proliferation Fitsialo et al, 2007; 

(Warke et al, 2003) 
36711_at MAFF 15.576 1.6971 TF/activator Proliferation Motohashi et al, 

2004; Ye et al, 2006 
226066_at MITF 1.5963 -4.607 TF/activator Proliferation Gleason et al, 2008 
206877_at MXD1 29.952 1.0001 TF/repressor Proliferation, 

Differentiation 
Vastrik et al, 1995; 

Grandori et al, 
2000; (Rottmann et 
al, 2008; Lee et al, 

2006) 
202431_s_at MYC 1.9483 -1.03 TF/corepressor? Proliferation Murphy et al, 2004 
206675_s_at SKIL 3.9287 1.2144 TF/repressor Proliferation Fitsialo et al, 2007; 

(Levy et al, 2007) 
204790_at SMAD7 6.0035 1.1128 TF Proliferation Liu et al, 2003 

1EGF Max FC: maximum fold change observed by EGF over the entire treatment time. 
2EGF Min FC: minimum fold change observed by EGF over the entire treatment time. 
3The literature was manually collected from Pubmed. 
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Figure 25. Microarray Expression Profiles of Intermediate Transcriptional 
Regulators (BCL6, BNC1, ELF1, ELF5, ETS1, HES1) (Related to Table 8) 
Microarray profiles of BCL6, BNC1, ELF1, ELF5, ETS1, HES1. NHEKs were grown 
to 100 % confluent cell density before receiving a last feed.  After 48 h of last feed, 
cells were treated with or without EGF (10 ng/ml) in basal medium for 0, 1, 2, 4, 8, 
16, and 24 h.  These graphs are organized in alphabetical order.  Red dots indicate 
control samples.  Green dots indicate EGF treated samples. 
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Figure 26. Microarray Expression Profiles of Intermediate Transcriptional 
Regulators (IRX5, KLF6, MAFF, MXD1, MYC, NFKBIZ) (Related to Table 8) 
Microarray profiles of IRX5, KLF6, MAFF, MXD1, MYC, NFKBIZ. NHEKs were 
grown to 100 % confluent cell density before receiving a last feed.  After 48 h of last 
feed, cells were treated with or without EGF (10 ng/ml) in basal medium for 0, 1, 2, 
4, 8, 16, and 24 h.  These graphs are organized in alphabetical order.  Red dots 
indicate control samples.  Green dots indicate EGF treated samples. 
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Figure 27. Microarray Expression Profiles of Intermediate Transcriptional 
Regulators (TGIF1 and TRIM16) (Related to Table 8) 
Microarray profiles of TGIF1 and TRIM16. NHEKs were grown to 100 % confluent 
cell density before receiving a last feed.  After 48 h of last feed, cells were treated 
with or without EGF (10 ng/ml) in basal medium for 0, 1, 2, 4, 8, 16, and 24 h.  
These graphs are organized in alphabetical order.  Red dots indicate control 
samples.  Green dots indicate EGF treated samples. 
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Figure 28. qRT-PCR Expression Profiles of Intermediate Transcriptional 
Regulators (Related to Figures 25-27) 
Validation of microarray expression profiles of the genes in Figures 25-27.  NHEKs 
were grown to 100 % confluent cell density before receiving a last feed.  After 48 h 
of last feed, cells were treated with or without EGF (10 ng/ml) in basal medium for 
0, 1, 2, 4, 8, 16, and 24 h.  These graphs are organized in alphabetical order.  Results 
are expressed as relative expression from values obtained in response to t0 samples. 
Bars represent means ± SD (n = 3).  Two-way ANOVA with Bonferroni post-tests 
was used to evaluate significant difference. * p < 0.05, ** p < 0.001, *** p < 0.0001. 
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Figure 29. Microarray Expression Profiles of Late Transcriptional 
Regulators (ATF3, CTNNB1, E2F7, FOS, ID2, JUN) (Related to Table 8) 
Microarray profiles of ATF3, CTNNB1, E2F7, FOS, ID2, JUN. FOXN1 
microarray profile is not shown as it was detected as absent.  NHEKs were grown 
to 100 % confluent cell density before receiving a last feed.  After 48 h of last 
feed, cells were treated with or without EGF (10 ng/ml) in basal medium for 0, 1, 
2, 4, 8, 16, and 24 h.  These graphs are organized in alphabetical order.  Red dots 
indicate control samples.  Green dots indicate EGF treated samples.  
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Figure 30. Microarray Expression Profiles of Late Transcriptional 
Regulators (MITF, MSX2, NOTCH1, PBX1, POU2F3, PRDM1) (Related to 
Table 8) 
Microarray profiles of MITF, MSX2, NOTCH1, PBX1, POU2F3, PRDM1. NHEKs 
were grown to 100 % confluent cell density before receiving a last feed.  After 48 
h of last feed, cells were treated with or without EGF (10 ng/ml) in basal medium 
for 0, 1, 2, 4, 8, 16, and 24 h.  These graphs are organized in alphabetical order.  
Red dots indicate control samples.  Green dots indicate EGF treated samples.  
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Figure 31. Microarray Expression Profiles of Late Transcriptional Regulators 
(RELA, SKIL, SMAD1, SMAD3, SMAD7) (Related to Table 8) 
Microarray profiles of RELA, SKIL, SMAD1, SMAD3, SMAD7. NHEKs were grown 
to 100 % confluent cell density before receiving a last feed.  After 48 h of last feed, 
cells were treated with or without EGF (10 ng/ml) in basal medium for 0, 1, 2, 4, 8, 
16, and 24 h.  These graphs are organized in alphabetical order.  Red dots indicate 
control samples.  Green dots indicate EGF treated samples.  
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Figure 32. qRT-PCR Analysis of Late Transcriptional Regulators (Related 
to Figures 29-31) 
Validation of microarray expression profiles of the genes in Figures 29-31.  
NHEKs were grown to 100 % confluent cell density before receiving a last feed.  
After 48 h of last feed, cells were treated with or without EGF (10 ng/ml) in basal 
medium for 0, 1, 2, 4, 8, 16, and 24 h.  These graphs are organized in alphabetical 
order.  Results are expressed as relative expression from values obtained in 
response to t0 samples. Bars represent means ± SD (n = 3).  Two-way ANOVA 
with Bonferroni post-tests was used to evaluate significant difference. * p < 0.05, 
** p < 0.001, *** p < 0.0001. 
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Figure 33. An Integrated Model of Homeostasis of Epidermal Keratinocytes 
A dynamic model of epidermal homeostasis (Okuyama et al., 2004) has been 
proposed.  In this model, there is an equilibrium between the stem cell, transit 
amplifying cell populations, and cells that have withdrawn reversibly versus 
irreversibly from the cell cycle.  Boxes that are above the dynamic model list signals 
regulating the identified forward rate constants; those below the ---- line identify 
reverse constants).  Boxes that are below the dynamic model identify cell markers 
that are currently used to discriminate the different compartments.  EGF suppresses 
the expression of genes that are highlighted in green and induces those that are in red.  
The expression of these genes have been validated by qRT-PCR.  Most of them are 
found to be significant by our microarray data. 
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Immunoblot analysis was performed on several pro-differentiation TFs including FOXN1, 

POU2F3, and ELF5.  Consistent with the expression data, the protein levels of these TFs 

were significantly inhibited by EGF at 48 h (Figure 34).  This indicates that EGF inhibits 

keratinocyte differentiation by down-regulating TFs involved in the terminal 

differentiation of keratinocytes. 

 

 
 
 
MEK and PKC Appear to be Primary EGFR Signaling Pathway that Affects 

Keratinocyte Differentiation 

To identify the EGFR-dependent signaling pathways that mediate the EGF effects in 

epidermal keratinocytes, we treated NHEKs with wortmannin (400 nM), U0126 (10 µM), 

SB20358 (20 µM), Gö6983 (10 µM), or NSC23766 (100 µM) to specifically inhibit PI3K, 

MEK, p38, PKC, and RAC, respectively. We performed qRT-PCR on the genes 

 
 
Figure 34. EGF Inhibits Pro-differentiation Transcr iption Factors. 
EGF decreases protein levels of the pro-differentiation TFs FOXN1, POU2F3, 
and ELF5. NHEKs were grown to 100 % confluent cell density before 
receiving a last feed.  After 48 h of last feed, cells were treated with or without 
EGF (10 ng/ml) in basal medium for 24 h.  Then, they were switch to basal 
medium containing with or without EGF (10 ng/ml) in the presence of 1 mM 
Ca2+.  Cell lysates were harvested 24 h after the last media change.  ACTB is a 
loading control (n = 3).  Bars represent means ± SD.  Student’s t-test was used 
to evaluate statistical significance (p < 0.05).  
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identified in Table 7 and Table 8 after 4 and 24 h of treatment with these 4 chemicals.  

We noticed that there was a significant overlap in the signals that altered the expression 

of individual genes.  The MEK signaling pathway appeared to be a dominating pathway 

that was activated by EGF in epidermal keratinocytes.  EGF signaled primarily through 

the MEK and PKC signaling pathways to decrease the expression of the TFs that promote 

differentiation and increase the expression of those that promote proliferation. When the 

MEK signaling pathway was not involved, the PKC signaling pathway appeared to 

mediate the up-regulation of some keratinocyte pro-differentiation TFs expression 

(Tables 9 and 10). 

Table 9. Rank Order of Inhibitor Effects on EGF-downregulated Transcriptional 
Regulators Based on qRT-PCR Analysis  

Gene 
Symbol 

Molecular 
function 

Role in cell 
development Rank order of inhibitor release Observed 

time point1 

MITF TF/activator Proliferation PI3K > PKC 24 h 
ID2 repressor Proliferation MEK 4 h 
NOTCH1 TF Differentiation MEK > Rac1 4 h 
   MEK 24 h 
IRX5 TF Differentiation MEK 4 h 
FOXN1 TF Differentiation MEK > PKC > PI3K 4 h 
POU2F32,3 TF Differentiation PI3K 24 h 
BCL62 TF/repressor Differentiation PI3K 4 h and 24 h 
   MEK 24 h 
ELF52 TF/activator Differentiation Rac1 4 h and 24 h 
IRX3 TF Differentiation Block PKC, EGF suppressed IRX3 even more 4 h and 24 h 
RFX2 TF Differentiation PI3K  
SOX2 TF Differentiation MEK > PKC > PI3K 4 h 
ID3 TF Differentiation MEK > PKC 4 h and 24 h 
MEIS1 TF Differentiation PI3K > Rac1 4 h 
PIR4 TF Differentiation MEK > PKC > Rac1 24 h 
PRMT63 chromatin structure PKC 24 h 
NFKBIZ TF/activator Differentiation PKC> MEK 24 h 
TCF4 TF Differentiation not validated5  
ELF1 TF/activator Differentiation not validated**   
PBX1 TF/activator Differentiation not validated**   
SMAD1 TF/activator Antiproliferatio

n 
not validated**   

EAF2 TF/activator Differentiation not validated**   
MSX2 repressor Differentiation not validated**    
1Time point where the suppression by EGF was released by an inhibitor. 
2Block PKC, EGF suppressed the mRNA of the genes even more. 
3Block Rac1, EGF suppressed the mRNA of the genes even more. 
4Block PI3K, EGF suppressed the mRNA of the genes even more. 
5not validated: qRT-PCR results using samples from microarray and inhibitor studies did not validate the microarray expression 
profile for EGF. 
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Table 10. Rank Order of Inhibitor Effects on EGF-upregulated Transcriptional 
Regulators Based on qRT-PCR Analysis 
Gene 
Symbol 

Molecular function Role in cell 
development 

Rank order of inhibitor 
suppression 

Observed 
time point1 

E2F7 repressor Proliferation MEK = PI3K 4 h 
   PI3K > MEK 24 h 
ETS1 TF Proliferation MEK > PKC = PI3K > Rac1 4 h 
   PKC > MEK = PI3K  
KLF6 activator Proliferation MEK > Rac1 4 h 
   MEK > PKC 24 h 
CTNNB1 coactivator Proliferation PKC 4 h 
SMAD7 TF/activator Proliferation MEK > PKC > Rac1 4 h 
BNC1 TF Proliferation MEK 4 h 
   PI3K > MEK 24 h 
ATF3 corepressor, repressor 

of Nrf2 
Proliferation PKC = PI3K 4 h 

FOS TF Proliferation MEK > PKC > PI3K 4 h and 24 h 
TGIF1 corepressor of 

SMAD2 
Inhibit 
proliferation 

MEK ~ PKC; PI3K 4 h 

   PI3K 24 h 
PRDM1 repressor Differentiation MEK > PKC > PI3K 4 h 
   MEK > Rac1 > PKC = PI3K 24 h 
TRIM16 coactivator Differentiation MEK 4 h 
SMAD3 activator Differentiation MEK > PKC 4 h and 24 h 
HES1 repressor Differentiation MEK, PI3K = PKC 24 h 
RELA TF Antiproliferation MEK 4 h 
   MEK > PKC 24 h 
TWIST2 repressor Growth MEK > PI3K > Rac1 4 h 
   MEK > Rac1 24 h 
ELK3 repressor  MEK > PKC > Rac1  4 h and 24 h 
SOX9 TF  MEK > PKC 4h and 24 h 
   Rac1 24 h 
FOSL1 TF  MEK > PKC > PI3K  4 h and 24 h 
FOSB2 TF  MEK > PKC  4 h 
   Rac1 = PKC 24 h 
MAFF2 TF/activator/repressor Proliferation MEK > PKC 4 h 
SKIL2 repressor Proliferation MEK = PKC 4 h 
MXD12 repressor Proliferation, 

Differentiation 
PKC > MEK 4 h and 24 h 

LBH2,3 activator  MEK > PKC > Rac1 4 h 
   PKC > MEK 24 h 
ZNF323 TF  none of the pathway4  
THOC4 coactivator  not validated5  
JUN TF Proliferation not validated5  
TP63 activator/repressor     Proliferation not validated5  
MYC TF/corepressor? Proliferation not validated5   
1Time point where the induction by EGF was blocked by an inhibitor. 
2Block PI3K, EGF induced the mRNA of the gene even more. 
3Block Rac1, EGF induced the mRNA of the gene even more. 
4none of the pathway: EGF did not signal through any of the inhibited pathways to upregulate the expression of the gene 
5not validated: qRT-PCR results from the microarray and inhibitor studies did not validate the microarray expression 
profile. 
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EGF Increases the Expression of MIRN21 to Promote Keratinocyte Proliferation 

MicroRNAs are approximately 22 nucleotides long, non-coding RNA molecules that 

bind to the 3’ untranslated regions (UTR) of target mRNAs to influence the translation or 

stability of the transcripts.  MicroRNAs have been shown to be involved in hair follicle 

morphogenesis, cutaneous wound healing, psoriasis, autoimmune disorders, and skin 

carcinogenesis (Bostjancic and Glavac, 2008).  In our study, we noticed that microRNA-

21 (MIRN21) was significantly upregulated 7.6 and 5.0 fold by EGF at 4 and 8 h, 

respectively (Figure 28A).  This increase was validated by qRT-PCR (Figure 28B).  

MIRN21 is the only microRNA that is over-expressed in 11 types of solid tumors, 

including stomach, prostate, head and neck, esophagus, glioblastoma, neuroblastoma, 

cholangiocarcinoma, breast, lung, colorectal, and pancreatic cancer (Lu et al., 2008; 

Medina and Slack, 2008).  Increased expression of MIRN21 is observed in skin with 

psoriasis and atopic eczema as compared to healthy skin (Sonkoly et al., 2007).  

Moreover, activation of EGFR signaling has been shown to increase expression of 

MIRN21 in lung cancer in never-smokers (Seike et al., 2009).  To test the role of 

MIRN21 in our study, the expression of programmed cell death 4 (PDCD4), a known 

MIRN21 target, was examined.  The RNA level of PDCD4 was significantly decreased 

by EGF at 16 and 24 h as observed by both microarray and qRT-PCR results (Figure 28).  

Inhibition of MIRN21 has been shown to suppress cell proliferation in HeLa cervical 

carcinoma and hepatocellular cancer cells (Meng et al., 2007; Yao et al., 2009).  Since 

MIRN21 appears to be an EGFR-regulated factor that plays a role in skin diseases and 

affects cell proliferation, we hypothesized that EGF increases the expression of MIRN21 

to promote keratinocyte proliferation by suppressing its target genes.  In order to prove 
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this hypothesis, other experiments need to be performed.  First, more validation should be 

done on other MIRN21 targets such as phosphatase and tensin homologue (PTEN), 

tropomyosin 1 (TPM1), tissue inhibitor of metalloproteinase 3 (TIMP3), sprout homolog 

2 (SPRY2), nuclear factor I/B (NFIB), and AT-rich interactive domain 1A (ARID1A).  

The interpretation of the results on MIRN21 target genes should be placed in the context 

of their functions.  Keratinocytes should be transfected with either anti-MIRN21 or a 

control inhibitor, and then treated with or without EGF (10 ng/ml).  Cell proliferation 

assay using bromodeoxyuridine (BrdU) and luciferase reporter gene assays can then be 

done on these cells.  A microarray experiment using RNA from control and anti-MIRN21 

cells can be used to identify MIRN21 functionally important targets that contribute to 

keratinocyte proliferation and differentiation.  
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Figure 35. Expression Profiles of MIRN21 and One of Its Target Genes 
The effects of EGF on expression of MIRN21 and PDCD4, a target of 
MIRN21. 
(A) Microarray expression profiles of MIRN21 and one of its target genes, 
PDCD4.  NHEKs were grown to 100 % confluent cell density before receiving 
a last feed.  After 48 h of last feed, cells were treated with or without EGF (10 
ng/ml) in basal medium for 0, 1, 2, 4, 8, 16, and 24 h.  Red dots indicate control 
samples.  Green dots indicate EGF treated samples.  
(B) qRT-PCR results of the genes in (A).  Results are expressed as relative 
expression from values obtained in response to t0 samples. Bars represent 
means ± SD (n = 3).  Two-way ANOVA with Bonferroni post-tests was used to 
evaluate significant difference. *p < 0.05, **p < 0.001, ***p < 0.0001. 
  



www.manaraa.com

114 
 

DISCUSSION 

Our results provide a vast new understanding of how activation of the EGFR 

abrogates epidermal permeability barrier function by regulating the expression of 

enzymes catalyzing lipid biosynthesis, protein precursors of the cornified epithelium, and 

proteins of intercellular TJs.  Establishing an epidermal permeability barrier in utero is 

required for both mice and humans to survive the transition from an aqueous in utero to a 

terrestrial ex utero environment. To complete this barrier acquisition, terminally 

differentiated epidermal cells, lipids, and tight junctions are all required. 

The permeability barrier relies on the lipid matrix in the SC, which mainly consists of 

ceramides, free fatty acids, and cholesterol (Mimeault et al., 2004).  Two previous 

qualitative studies have investigated the effects of EGF on keratinocyte lipid biosynthesis. 

In the first (Ponec et al., 1997), a slight decrease in Cer content was observed in 

keratinocytes cultured at the air-liquid interface at 37°C for 14 days in the presence of 

EGF compared to control.  In the second (Gibbs et al., 2000), EGF was reported to 

decrease the amounts of phospholipids and glucosphingolipids in organotypic cultures of 

keratinocytes compared to native skin.  Neither study identified the molecular mechanism 

underlying these effects of EGF, nor provided sufficient statistical analysis. A recent 

study of NHEKs showed that ACER1 expression is strongly inhibited by EGF and highly 

induced during epidermal keratinocyte differentiation.  This enzyme breaks down 

ceramide to sphingosine, which can also be derived from sphingosine-1-phosphate (S1P).  

Sphingosine and S1P are two bioactive lipids that mediate apoptosis, proliferation, and 

differentiation in keratinocytes (Sun et al., 2008). Here, we provided evidence that EGF 

decreased several key enzymes affecting free fatty acid and ceramide biosynthesis.  
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Abnormal levels of these lipid classes have been observed in many skin disorders 

including psoriasis and atopic dermatitis (Harding et al, 2002; Okamoto et al, 2003; 

Zheng et al, 2003).  It has been reported that the content of the FFA fraction containing 

20–26 carbon atoms and the total ceramide amount are significantly reduced in atopic 

dermatitis and bullous ichthyosiform erythroderma (Paige et al, 1994). Cer1 is of great 

importance to the organization of the lipid matrix of the SC.  It is the only ceramide that 

can connect the lipid disks in the matrix, allowing the fusion and stabilization of the 

intercellular lipid lamellae (Bouwstra et al, 1998).  A decrease in the Cer1 content of the 

SC will most likely result in a decrease in the lipids organization. The level of Cer1 is 

markly decreased in non-erythrodermic lamellar ichthyosis (Paige et al, 1994), and skin 

psoriasis plaques (Gniadecki et al, 1998). Cer3 and Cer6 make the lipid matrix more 

coherent through the interaction with other lipid components, and thus enhance the 

permeability barrier function. Deficiencies of Cer1 and Cer6 are found in Sjögren-Larson 

syndrome, a genetic disease characterized by ichthyosis, spastic paraplegia and mental 

retardation (Paige et al, 1994).  Collectively, these results strongly support the 

physiologic connection of the observed effects of EGF on the FFA and ceramide 

deficiencies which are seen in the SC of patients with psoriasis, AD, and ichthyosis.  

The formation of the lipid matrix and CEs takes place concomitantly in the upper 

granular layer and is essential for maintenance of barrier function (Candi et al., 2005). 

EGF is known to have an inhibitory effect on the formation of CEs (Sun and Green, 

1976). However, the mechanisms underlying the loss of CE after EGF treatment has been 

restricted to the reduction of few intermediate filaments and their binding proteins (KRT1, 

KRT10, and FLG), CE precursors (LOR, and IVL), and TGM1 (Gibbs et al., 1998; 
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Marchese et al., 1990; Monzon et al., 1996; Poumay and Pittelkow, 1995; Reiss and 

Sartorelli, 1987).  Consistent with these studies, we observed a significant reduction in 

CE competence as well as inhibition of KRT1, KRT10, TGM1, FLG, and LOR expression. 

More importantly, we demonstrated that these effects of EGF were through the activation 

of the EGFR, as inhibition of the EGFR tyrosine kinase blocked these effects.  

Furthermore, we identified many previously unrecognized EGF-repressed genes, 

including most of the well characterized proteins that participate in the synthesis of the 

CE including multiple TGM, SPRR, LCE and S100 proteins (Appendix A) (Candi et al, 

2005). Our results greatly advance the current understanding of the molecular 

mechanisms of EGFR signaling and its inhibition of keratinocyte differentiation. 

The regulation of TJ proteins by EGF has been studied in several cell lines including 

Madin-Darby Canine Kidney cells, TMK-1 gastric cancer cells, and Caco-2 cells 

(Yoshida et al, 2005; Singh et al, 2004; Samak et al, 2011). However, to our knowledge, 

there has not been a study of the effects of EGF on TJ barrier function in NHEKs.  In 

NHEK cultures, a continuous network of TJs assemble as the epidermal barrier forms 

(Yuki et al., 2007). Our experiments demonstrated that EGF reduced levels of CLDN1 

and TJP1 by approximately 70%, and this preceded a remarkable 50% reduction in TJ 

function based on both electrical resistance and permeability assays.  TER reflects small-

pore water ions permeability, whereas the flux of dextrans measures the permeability of 

large barrier breaks. These results indicate that EGF disrupts TJ function, making the 

barrier more susceptable to environmental allergens, one of the characteristics observed 

in skin of patients with AD. 
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 One of the most important functions of the epidermal barrier is to prevent excessive 

water loss.  TEWL is a technique used to measure the water content property of the skin.  

High TEWL indicates aberrant barrier function and is associated with various human skin 

diseases such as atopic dermatitis, psoriasis, contact dermatitis, and ichthyosis (Effendy 

et al., 1995; Tagami and Yoshikuni, 1985; Tomita et al., 2005; Werner and Lindberg, 

1985).  To demonstrate the effect of EGF on epidermal barrier function as a whole, we 

measured TEWL in organotypic cultures, a model to study in vitro the skin barrier 

function (Pasonen-Seppanen et al., 2001; Regnier et al., 1992). This in vitro model allows 

us to compare the effect of EGF on the uniform architecture and metabolism that would 

otherwise be impossible to obtain in animal models.  In addition, there are no limitations 

in performing laboratory tests on organotypic cultures, whereas making assessment of a 

product or a treatment on animals is more costly.  Here, we showed that EGF increased 

TEWL in organotypic cultures, indicating that the epidermal barrier integrity is impaired 

by the treatment.  This suggests that EGF plays an active role in making the skin more 

susceptible to skin diseases.       

The regulation of gene expression drives all developmental and differentiation 

processes.  In eukaryotes, TFs define the state of expression and hence the execution of 

downstream differentiation/morphogenetic events by coordinately integrating signals 

from upstream developmental/growth factor signaling pathways. Our studies identified 

several EGF-suppressed TFs including KLF4 and GATA3 that are essential for the 

initiation and progression of epidermal differentiation.  Each of these TFs activates 

distinct aspects of terminal differentiation.  KLF4 is necessary and sufficient for the 

establishment of a functional epidermal barrier since targeted deletion results in loss of 
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barrier function and ectopic expression accelerates the formation of the epidermal barrier 

(Jaubert et al., 2003; Segre et al., 1999).  Genes encoding structural components of the 

CE are misregulated in Klf4-/- mutants.  Specifically, Krt1 and Lor are downregulated 

while Sprr2a, whose promoter possesses a functional KLF4 binding site, is upregulated 

in Klf4-/- skin (Fischer et al, 1996; Segre et al., 1999). This direction is concordant with 

the effect of EGF on KRT1, LOR, and SPRR2A, suggesting that the deleterious effect of 

EGF on KLF4 alters expression of CE genes, leading to an inhibition in CE assembly as 

demonstrated here and in other studies (Sun and Green, 1976; Monzon et al, 1996).  

Similarly, epidermal-specific deletion of Gata3 in mice results in an impaired epidermal 

barrier and perinatal lethality (de Guzman Strong et al., 2006).   However, in contrast to 

Klf4, the Gata3 deletion strongly affects the expression of genes involved in lipid 

biosynthesis, with the null allele mice showing significantly lower expression of several 

critical genes in this pathway including Alox12b, Elovl3 and 4, and Acer1 (de Guzman 

Strong et al., 2006).  In the present study, we showed that EGF repressed the expression 

level of GATA3 by 62%.  This reduction was paralleled by significantly lower levels of 

expression of multiple lipid metabolism genes including ALOX12B (30%), ACER1 (71%) 

and ELOVL3 (76%) and 4 (27%).  Of note, mice lacking Alox12b or Elovl4 die 

perinatally due to defective skin permeability barrier function and severe dehydration.  

Furthermore, Alox12b null mice show significant decreases in certain ω-hydroxyCers that 

are covalently bound to the CE (Epp et al., 2007), and skin grafts from Alox12b null mice 

exhibit an ichthyosiform phenotype (de Juanes et al., 2009).  Elovl4 null mice show 

significant decreases in FFA having chain lengths longer than C26, and ceramides with 

ω-hydroxy VLCFAs (Cameron et al., 2007; Epp et al., 2007; Li et al., 2007b).  Free 
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VLCFAs are required for ceramide synthesis in epidermal barrier and are essential for the 

highly organized stratum corneum to prevent water penetration.  Together, these data 

suggest that EGF-mediated suppression of GATA3 could be detrimental to the integrity of 

the permeability barrier, as major components of the lipid matrix are significantly 

reduced. 

Evidence for additional levels of EGFR-mediated regulation is observed in the 

example of TIAM1 (T-lymphoma invasion and metastasis 1), a RAC-specific guanine 

nucleotide exchange factor, whose level of expression is significantly decreased by EGF. 

In epithelial cells, RAC1 regulates the formation and function of adheren and TJs in 

epithelial cells (Lozano et al, 2003).  Epidermal keratinocytes from TIAM1-deficient mice 

show impaired junction maturation by lowering levels of TJ proteins such as CLDN1 and 

TJP1, and TJ barrier function (Mertens et al, 2005).  In wild-type keratinocytes, the 

TIAM1-dependent activated RAC1 binds to PAR3 (protease-activated receptor 3) and 

threonine phosphorylates PKCζ (protein kinase C, zeta) of the polarity complex (PAR3-

PAR6-aPKC) to control the TJ formation (Mertens et al., 2005).  Based on these 

observations, it seems reasonable to hypothesize that EGF diminishes TIAM1-mediated 

RAC signaling, and thereby inactivates the polarity complex, leading to the reduction of 

CLDN1 and TJP1 proteins and inhibition of TJ biogenesis. This, in turn, disrupts the 

permeability barrier function, making the barrier more permissive to many environmental 

allergens.  This increased sensitivity to allergens is one of the characteristics observed in 

skin of patients with AD (de Benedetto et al., 2011). 

In the epidermis, keratinocyte cell fate is tightly regulated by orchestrating large scale 

changes in gene expression. Here, as previously reported (Okuyama et al., 2004; Wilke et 
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al., 1988), cell density affected the expression of at least four thousand genes, directing 

the progression of keratinocytes through a terminal differentiation program.  Shown here, 

EGF counter-regulated more than 50% of these genes, producing the opposite effects on 

keratinocytes compared to density.  Moreover, EGF down-regulated genes are reported to 

be expressed in suprabasal layers, whereas EGF up-regulated genes are reported to be 

expressed in the basal layer. EGF is known to suppress keratinocyte differentiation by 

inhibiting mRNA and protein levels of early and late differentiation markers (Drozdoff 

and Pledger, 1993; Marchese et al., 1990; Poumay and Pittelkow, 1995).  Here, we 

observed that EGF suppressed the differentiation program by both inhibiting and 

promoting the expression of genes related to the differentiation or proliferation of 

keratinocytes, respectively, providing a new view of how EGF is regulating epidermal 

homeostasis.  

Adding to this new view, we found that EGF down-regulated DSG1, an important 

signaling molecule of epidermal tissue homeostasis. The induction of DSG1 is required 

to maintain the epidermal barrier integrity and suppress EGFR-mediated ERK1/2 

signaling, to promote keratinocyte differentiation (Getsios et al., 2009). The expression of 

this gene was increased about 12-fold by cell density.  However, the induction of DSG1 

and its direct transcription factor GRHL1 (Wilanowski et al., 2008) was abolished by 

EGF, indicating that EGF creates a feedback regulation between EGFR and DSG1. This 

reciprocal action of DSG1 and EGFR to repress one-another provides a specific example 

of a mechanism for regulating epidermal homeostasis.  Taken together, this raises the 

possibility that EGF functions as a key regulator that controls cell fate by altering gene 
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expression through modulating the expression of TFs involved in the terminal 

differentiation process. 

The epidermis is a dynamic tissue in which highly regulated mechanisms exist to 

balance keratinocyte proliferation and differentiation and maintain epidermal tissue 

homeostasis.  EGF appears to disrupt this balance by down- and up-regulating RNA and 

protein levels of pro-differentiation and pro-proliferation transcription factors, 

respectively.  An example of a keratinocyte differentiation regulator is FOXN1, a winged 

helix/forkhead transcription factor, which is reported to regulate the balance between 

proliferation and differentiation in self-renewing epithelia (Prowse et al., 1999).  In mice, 

rats, and humans, loss-of-function mutations of FOXN1 leads to nude phenotypes that are 

characterized by the abnormal development of the epidermis, the lack of visible hair, and 

the absence of the thymus (Flanagan, 1966; Pantelouris and Macmenamin, 1973).   In 

murine epidermis and hair follicles, loss of Foxn1 expression impairs terminal 

differentiation, as the stratum corneum, the inner root sheath, and the hair cuticle and 

cortex fail to form properly (Kopf-Maier et al., 1990).  Ectopic expression of Foxn1 in 

the epidermis using the Ivl promoter induces hyperproliferation and defects in 

differentiation (Prowse et al., 1999).  In cultures of primary keratinocytes from wild-type 

mice, Foxn1 is induced during the early stages of terminal differentiation (Baxter and 

Brissette, 2002).  The RNA levels of FOXN1 were significantly blocked by EGF starting 

at 4 h and remained repressed through 24 h, leading to a loss of protein at 48 h.  Another 

important regulator of keratinocyte differentiation is POU2F3 (also known as SKN-1A), 

a TF containing a POU domain.  This TF is a candidate for -determining cell fate in skin 

(Andersen et al., 1993; Goldsborough et al., 1993).  POU2F3 is expressed primarily in 
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the suprabasal layers of the epidermis where it directly regulates expression of KRT10 

(Andersen et al., 1993), SPRR2A (Fischer et al., 1996), and IVL (Welter et al., 1996) 

genes.  In mice, in vivo ablation mutation of Pou2f3 does not reveal a specific function of 

the gene (Andersen et al., 1997).  However, in in vitro raft cultures, POU2F3 plays an 

important role in maintaining epidermal homeostasis by primarily promoting keratinocyte 

proliferation, and secondarily by enhancing subsequent keratinocyte differentiation 

(Hildesheim et al., 2001).  RNA levels of POU2F3 were down-regulated by EGF 

significantly at 16 and 24 h, while its protein expression was repressed at 48 h by EGF.  

Another important regulator of keratinocyte differentiation is ELF5, a member of an 

epithelium-specific subclass of the Ets domain transcription factor family.  The ELF5 

transcript is not expressed in undifferentiated keratinocytes, but is induced during 

keratinocyte differentiation.  A potential target for ELF5 is SPRR2A gene (Oettgen et al., 

1999).  RNA and protein levels of ELF5 were down-regulated significantly by EGF 

starting at 8 h. In our study, EGF also suppressed RNA levels of NOTCH1 at 4 h.  EGFR 

signaling is reported as negative regulator of the expression of NOTCH1, an important 

regulator of cell-fate decision, thereby blocking the action of NOTCH1 to promote 

keratinocyte differentiation in cell culture and skin explants (Kolev et al., 2008).  These 

examples of EGFR signaling as a negative regulator of the expression of FOXN1, 

POU2F3, ELF5, and NOTCH1, support a model where EGFR signaling influences 

keratinocyte cell fate by regulating the expression of multiple pro-differentiation 

transcription factors, each affecting distinct aspects of cell differentiation.   

Besides down-regulating pro-differentiation TFs, EGF appeared to up-regulate many 

transcriptional regulators involved in keratinocyte proliferenation.  For example, EGF 
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significantly increased the transcript levels of ETS1 at 4 and 8 h.   ETS1 is an oncogene 

that functions as a TF.  In mice, Ets1 is mainly expressed in undifferentiated 

keratinocytes of the skin and its expression is downregulated as cells commit to terminal 

differentiation program (Nagarajan et al., 2009).  Ectopic expression of ETS1 in 

differentiated keratinocytes of transgenic mice results in major epidermal defects 

including shiny, taut, and translucent skin.  These mice die shortly after birth due to rapid 

dehydration (Nagarajan et al., 2010).  Induction of ETS1 leads to an increase in cellular 

proliferation in the basal layer, absence of the granular layer, and retention of nuclei in 

the stratum corneum.  Overexpression of ETS1 results in premature expression of the 

early differentiation marker KRT10, whereas the expression of late differentiation 

markers such as LOR and FLG are decreased (Nagarajan et al., 2010).  Another anti-

differentiation regulator that was up-regulated by EGF is SMAD7.  SMAD7 has an 

antagonistic effect on TGFβ signaling, a potent inhibitor of cellular proliferation in skin 

keratinocytes (Munger et al., 1992).  It is suggested that SMAD7 may participate in a 

negative feedback loop to control TGFβ responses in normal epidermis (He et al., 2001).  

Mouse Smad7 protein decreases normal differentiation of primary mouse keratinocytes 

(Liu et al., 2003).  EGF also upregulated RNA levels of MXD1, a transcriptional 

repressor belongs to a subfamily of MAX-interacting proteins.  The MYC/MAX/MAD 

network plays a role in cell proliferation, differentiation, and death (Grandori et al., 2000).  

The MXD1 protein can inhibit cellular growth in vitro (Vastrik et al., 1995).  MXD1 is 

highly expressed in differentiating epidermal keratinocytes, whereas its expression is 

absent in proliferating basal epidermal cells (Lymboussaki et al., 1996).  These results 
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indicate that EGF also controls transcriptional regulators involved in keratinocyte 

proliferation to affect epidermal homeostasis. 

EGFR signaling regulates fundamental aspects in skin biology, including cellular 

proliferation and differentiation, wound healing, and hair follicle morphogenesis 

(Schneider et al., 2008).  The MAPKs, PI3K, and PLC are the three majors signaling 

cascades of EGFR signaling.  The MAPKs include ERKs, JNKs, and the p38 kinases 

(Gazel et al., 2008).  In cultured keratinocytes, JNK activation inhibits epidermal 

differentiation (Gazel et al., 2006).  The p38 pathway is activated in keratinocytes by 

oxidative stress, UV light, proinflammatory signals, psoriasis, and wound healing 

(Kobayashi et al., 2003).  It plays an important role in the pathogenesis of pemphigus 

vulgaris and mediates keratinocyte migration (Li et al., 2004).   Activation of ERK 

produces very similar effects to those of p38 activation (Yano et al., 2004).  The PI3K 

/Akt pathway is activated early during differentiation in cultured keratinocytes and in the 

intact epidermis.  This activation is a key determinant of keratinocyte differentiation and 

survival (Calautti et al., 2005).  EGFR also activates PLC pathway which affects cell 

migration (Dittmar et al., 2002).  Because of the diverse effects of these signaling 

pathways on keratinocytes, we hope to identify, by inhibiting these signaling pathways, 

the regulatory networks that control the identified transcription factors and regulate 

keratinocyte homeostasis.  Unfortunately, we found that these pathways significantly 

overlap in the TF genes that they target even though there are distinct and unique effects 

among these EGFR signaling pathways. We noticed that EGF affects keratinocyte 

differentiation and proliferation transcriptional regulators late in time (starting at 8 h after 

EGF treatment), indicating that these genes may be activated following the synthesis of 
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immediate early gene products.  Our study design did not capture immediate early genes 

that are transiently and rapidly transcribed in response to the addition of EGF treatment.  

The transcription of immediate early genes does not require de novo protein synthesis.  

We now believe that immediate early genes determine the genomic response of 

keratinocyte to the density and EGF treatment, and that EGFR signaling should be 

mapped to these genes, once identified.  As a result, another study design will need to be 

performed at early times such as 1, 5, 10, and 30 min, in the presence or absence of 

cycloheximide, an inhibitor of protein synthesis (Godchaux et al., 1967). 

Human and nonhuman genetic studies have identified a large number of genes 

associated with dermatological diseases. Intriguingly, we have shown that among the 

density-induced genes when compared to the list of EGF-nonresponsive genes, EGF-

responsiveness significantly enriches for genes associated with skin disease.  For example, 

EGF resulted in a 67% reduction in the levels of ABCA12.  Loss of function of ABCA12 

leads to lipid trafficking defects and decreases in the total amount of Cer (Yanagi et al., 

2010).  Mutations in this gene are causally associated with Harlequin ichthyosis 

(Akiyama et al., 2005).  Similarily, EGF reduced by 29% the level of SLC27A4, a gene 

encoding the long chain fatty acid transporter.  Mutations in this gene are associated with 

ichthyosis premature syndrome (Klar et al., 2009).  In contrast to these examples, EGF 

up-regulates the level of expression of S100A7, a transglutaminase substrate/CE 

precursor that is highly elevated in psoriasis and AD (Glaser et al., 2009; Madsen et al., 

1992).  While these three genes are exemplary of the effects of EGF on known human 

skin disease genes, it is important to note that 111 similarly responsive skin disease genes 

and another 1184 genes not yet associated with skin disease have been identified by this 
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research. These data provide a new understanding of the molecular mechanisms by which 

EGF affects epidermal homeostasis and show how imbalance in this signaling pathway 

may lead to system-wide pathogenesis. 

In conclusion, our results provide a systems level understanding of EGFR signaling in 

repressing keratinocyte differentiation and impairing functional epidermal barrier 

integrity.  Epidermal homeostasis appears to be controlled by the spatial and temporal 

expression and activity of the EGFR, its ligands, and suppressors thereof. Activation of 

EGFR preferentially regulates genes known to be associated with skin disease, 

highlighting the importance of EGFR in skin pathology. Our data provide a valuable 

resource for further dissecting the molecular events and genetic basis in dermatological 

diseases. 
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Appendix A - Literature Support of Genes Involved in Cornified Envelope 
Formation (Refer to Chapter 3, Figure 16) 

Transcript 
cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Significant 
Index for 

EGF 
effect3 

Function in 
skin 

References 

7931859 CALML5 calmodulin-
like 5 

10.11 -3.04 1 Enzyme (Mehul et 
al., 2001) 

8026398 CASP14 caspase 14 9.19 -1.99 1 Enzyme (Lippens et 
al., 2000) 

8179716 CDSN corneodesmosi
n 

31.89 1.34 1 CE (Simon et 
al., 1997) 

7964834 CPM carboxypeptida
se M 

11.77 -1.93 1 CE (Taylor et 
al., 2009) 

7920178 CRNN cornulin 4.03 -2.17 1 CE (Contzler et 
al., 2005) 

7945663 CTSD cathepsin D 2.70 -1.44 1 Enzyme (Egberts et 
al., 2004) 

8162652 CTSL2 cathepsin L2 3.03 1.71 1 Enzyme (Cheng et 
al., 2006) 

8026424 CYP4F22 cytochrome 
P450, family 4, 
subfamily F, 

polypeptide 22 

18.64 -2.35 1 Enzyme? (Lefevre et 
al., 2006) 

8036079 DMKN dermokine 8.63 -1.34 1 CE (Bazzi et 
al., 2007) 

8022728 DSC1 desmocollin 1 16.56 -2.81 1 Cell adhesion (King et al., 
1996; 

Taylor et 
al., 2009) 

8020724 DSG1 desmoglein 1 11.67 -1.60 1 Cell adhesion (Getsios et 
al., 2009) 

8020762 DSG3 desmoglein 3 
(pemphigus 

vulgaris 
antigen) 

1.62 1.19 1 Cell adhesion (Koch et 
al., 1997) 

8127767 ELOVL4 elongation of 
very long chain 
fatty acids-like 

4 

11.12 -1.92 1 Fatty acid 
elongase 

(Cameron 
et al., 2007) 

7920165 FLG filaggrin 55.43 -1.54 1 CE, EDC (Dale et al., 
1985; 

Kalinin et 
al., 2002) 

7920175 FLG2 filaggrin 
family member 

2 

65.91 -1.82 1 CE (Wu et al., 
2009a) 

7965606 HAL histidine 
ammonia-lyase 

44.86 -3.76 1 Enzyme (Eckhart et 
al., 2008) 

8103769 HPGD hydroxyprostag
landin 

dehydrogenase 
15-(NAD) 

25.24 -1.77 1 CE (Taylor et 
al., 2009) 

1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
3Indicates whether the effect of EGF on the gene is statistically significant; 1: significant, 0: non-significant 
CE: cornified envelope; EDC: epidermal differentiation complex on human chromosome 1q21 
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Appendix A - Literature Support of Genes Involved in Cornified Envelope 
Formation (Refer to Chapter 3, Figure 16) (cont.) 
Transcript 
cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Significant 
Index for 

EGF 
effect3 

Function in 
skin 

References 

7920155 HRNR hornerin 48.67 -2.20 1 CE (Henry et 
al.; Makino 
et al., 2001) 

8038670 KLK5 kallikrein-
related 

peptidase 5 

2.33 -1.14 1 Tryptic 
enzyme, 

desquamation 

(Borgono 
et al., 2007) 

7905515 KPRP keratinocyte 
proline-rich 

protein 

12.23 2.31 1 marker of 
keratinocyte 

late 
differentiation 

(Kong et 
al., 2003) 

7963491 KRT1 keratin 1 42.74 -3.35 1 Structural 
proteins 

(Stoler et 
al., 1988) 

8015104 KRT10 keratin 10 22.67 -2.50 1 Structural 
proteins 

(Ming et 
al., 1994) 

7963479 KRT2 keratin 2 3.75 -1.95 1 Structural 
proteins 

(Collin et 
al., 1992) 

7963534 KRT4 keratin 4 12.95 -6.29 1 Structural 
proteins 

(Bazzi et 
al., 2007) 

7963502 KRT77 keratin 77 11.77 -3.04 1 Structural 
proteins 

(Bazzi et 
al., 2007) 

8036072 KRTDAP keratinocyte 
differentiation-

associated 
protein 

21.19 -2.07 1 Regulator of 
keratinocyte 

differentiation 

(Tsuchida 
et al., 2004) 

7905525 LCE1B late cornified 
envelope 1B 

4.48 3.22 1 CE, EDC (Jackson et 
al., 2005) 

7920193 LCE1C late cornified 
envelope 1C 

1.54 1.25 1 CE, EDC (Jackson et 
al., 2005) 

7920191 LCE3A late cornified 
envelope 3A 

2.01 3.00 1 CE, EDC (Jackson et 
al., 2005) 

7920185 LCE3D late cornified 
envelope 3D 

52.44 1.81 1 CE, EDC (Jackson et 
al., 2005) 

7920182 LCE3E late cornified 
envelope 3E 

9.82 2.57 1 CE, EDC (Jackson et 
al., 2005) 

7905563 LOR loricrin 44.32 -19.49 1 CE, EDC (Kalinin et 
al., 2002; 
Mehrel et 
al., 1990) 

7898413 PADI1 peptidyl 
arginine 

deiminase, type 
I 

2.97 1.70 1 Deiminase 
filaggrin and 

KRT1 

(Dong et 
al., 2008) 

8001007 PRSS8 protease, 
serine, 8 

2.23 1.34 1 serine 
protease 

(Leyvraz et 
al., 2005) 

7920146 RPTN repetin 35.51 -2.27 1 CE, EDC (Krieg et 
al., 1997) 
(Kalinin et 
al., 2002) 

1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
3Indicates whether the effect of EGF on the gene is statistically significant; 1: significant, 0: non-significant 
CE: cornified envelope; EDC: epidermal differentiation complex on human chromosome 1q21 
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Appendix A - Literature Support of Genes Involved in Cornified Envelope 
Formation (Refer to Chapter 3, Figure 16) (cont.) 
Transcript 
cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Significant 
Index for 

EGF 
effect3 

Function in 
skin 

References 

7920238 S100A12 S100 calcium 
binding protein 

A12 

16.11 -2.64 1 CE, EDC (Kalinin et 
al., 2002) 

7920252 S100A7 S100 calcium 
binding protein 

A7 

27.47 1.98 1 CE, EDC (Eckert and 
Lee, 2006) 

7920244 S100A8 S100 calcium 
binding protein 

A8 

4.68 -1.31 1 CE, EDC (Taylor et 
al., 2009) 

8109001 SPINK5 serine 
peptidase 

inhibitor, Kazal 
type 5 

21.52 -1.38 1 Serine 
Protease 
Inhibitor 

(Descargue
s et al., 
2005) 

7920205 SPRR2A small proline-
rich protein 2A 

1.52 1.80 1 CE, EDC (Gibbs et 
al., 1993) 

7920196 SPRR2D small proline-
rich protein 2D 

9.40 1.35 1 CE, EDC (Katou et 
al., 2003) 

7905548 SPRR3 small proline-
rich protein 3 

36.63 -2.34 1 CE, EDC (Hohl et al., 
1995) 

7978222 TGM1 transglutamina
se 1 

5.36 -1.38 1 Enzyme (Kalinin et 
al., 2002; 
Matsuki et 
al., 1998) 

8060432 TGM3 transglutamina
se 3 

3.13 -1.86 1 Enzyme (Kalinin et 
al., 2002; 
Zhang et 

al., 2005b) 
7988050 TGM5 transglutamina

se 5 
5.01 -1.85 1 Enzyme (Candi et 

al., 2002) 
7953775 A2ML1 alpha-2-

macroglobulin-
like 1 

4.23 1.09 0 protease 
inhibitor 

(Galliano et 
al., 2006) 

8052828 ASPRV1 aspartic 
peptidase, 

retroviral-like 
1 

11.24 -1.01 0 Protease, 
desquamation

? 

(Bernard et 
al., 2005) 

8037179 CNFN cornifelin 14.77 1.05 0 CE (Michibata 
et al., 2004) 

7905486 CRCT1 cysteine-rich 
C-terminal 1 

22.59 1.13 0 EDC (Marenholz 
et al., 2001) 

7941505 CST6 cystatin E/M 12.42 1.14 0 CE (Zeeuwen 
et al., 2002) 

8082058 CSTA cystatin A 
(stefin A) 

3.90 -1.12 0 protease 
inhibitor 

(Kalinin et 
al., 2002; 
Takahashi 

et al., 1998; 
Takahashi 

et al., 
2001a) 

1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
3Indicates whether the effect of EGF on the gene is statistically significant; 1: significant, 0: non-significant 
CE: cornified envelope; EDC: epidermal differentiation complex on human chromosome 1q21 
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Appendix A - Literature Support of Genes Involved in Cornified Envelope 
Formation (Refer to Chapter 3, Figure 16) (cont.) 
Transcript 
cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Significant 
Index for 

EGF 
effect3 

Function in 
skin 

References 

8020740 DSG4 desmoglein 4 1.50 1.20 0 Cell adhesion (Bazzi et 
al., 2006; 
Whittock 

and Bower, 
2003) 

8116780 DSP desmoplakin 1.57 -1.06 0 Cell adhesion (Kalinin et 
al., 2002) 

8018579 EVPL envoplakin 1.50 1.08 0 Cell adhesion (DiColandr
ea et al., 
2000; 

Kalinin et 
al., 2002) 

7905533 IVL involucrin 7.79 -1.15 0 CE, EDC (Kalinin et 
al., 2002; 
Robinson 

et al., 1997; 
Taylor et 
al., 2009) 

8038770 KLK14 kallikrein-
related 

peptidase 14 

1.50 1.08 0 serine-type 
endopeptidase

, 
desquamation 

(Stefansson 
et al., 2006) 

8038695 KLK7 kallikrein-
related 

peptidase 7 

11.31 -1.07 0 Chymotryptic 
enzyme, 

desquamation 

(Nin et al., 
2009; 

Taylor et 
al., 2009) 

8015133 KRT23 keratin 23 
(histone 

deacetylase 
inducible) 

54.47 -1.13 0 Structural 
proteins 

(Taylor et 
al., 2009) 

7905528 LCE1A late cornified 
envelope 1A 

2.13 1.17 0 CE, EDC (Jackson et 
al., 2005) 

7905523 LCE1D late cornified 
envelope 1D 

1.76 -1.11 0 CE, EDC (Jackson et 
al., 2005) 

7905507 LCE2A late cornified 
envelope 2A 

2.77 1.03 0 CE, EDC (Jackson et 
al., 2005) 

7905505 LCE2B late cornified 
envelope 2B 

1.56 -1.03 0 CE, EDC (Kalinin et 
al., 2002) 

7905503 LCE2C late cornified 
envelope 2C 

4.74 1.39 0 CE, EDC (Jackson et 
al., 2005) 

7905500 LCE2D late cornified 
envelope 2D 

3.23 1.38 0 CE, EDC (Jackson et 
al., 2005) 

7908672 PKP1 plakophilin 1 1.89 -1.04 0 Cell adhesion (Smith and 
Fuchs, 
1998) 

7999253 PPL periplakin 3.51 1.10 0 Cell adhesion (Kalinin et 
al., 2002) 

7905571 S100A9 S100 calcium 
binding protein 

A9 

4.19 1.29 0 CE, EDC (Kalinin et 
al., 2002; 
Taylor et 
al., 2009) 

1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
3Indicates whether the effect of EGF on the gene is statistically significant; 1: significant, 0: non-significant 
CE: cornified envelope; EDC: epidermal differentiation complex on human chromosome 1q21 
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Appendix A - Literature Support of Genes Involved in Cornified Envelope 
Formation (Refer to Chapter 3, Figure 16) (cont.) 
Transcript 
cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Significant 
Index for 

EGF 
effect3 

Function in 
skin 

References 

8093950 S100P S100 calcium 
binding protein 

P 

6.69 -1.17 0 CE, EDC (Taylor et 
al., 2009) 

8036103 SBSN suprabasin 25.63 -1.07 0 CE, EDC (Park et al., 
2002) 

7969493 SCEL sciellin 11.33 -1.08 0 CE, EDC (Baden et 
al., 2005) 

7905544 SPRR1A small proline-
rich protein 1A 

3.94 -1.16 0 CE, EDC (Robinson 
et al., 1997) 

7905553 SPRR1B small proline-
rich protein 1B 

(cornifin) 

1.88 -1.03 0 CE, EDC (Robinson 
et al., 1997) 

7920201 SPRR2B small proline-
rich protein 2B 

46.13 -1.08 0 CE, EDC (Taylor et 
al., 2009) 

7920214 SPRR2E small proline-
rich protein 2E 

31.50 -1.19 0 CE, EDC (Cabral et 
al., 2001; 
Katou et 
al., 2003) 

7920217 SPRR2G small proline-
rich protein 2G 

18.90 -1.01 0 CE, EDC (Cabral et 
al., 2001; 
Katou et 
al., 2003) 

7905536 SPRR4 small proline-
rich protein 4 

8.31 1.29 0 CE, EDC (Cabral et 
al., 2001) 

1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
3Indicates whether the effect of EGF on the gene is statistically significant; 1: significant, 0: non-significant 
CE: cornified envelope; EDC: epidermal differentiation complex on human chromosome 1q21 
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Appendix B - List of 114 Genes Related to Skin Diseases Based on Literature (Refer 
to Chapter 3, Figure 19) 

Transcript 
Cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Skin 
Diseases 

Level 
expressed in 
skin disease 

References 

8058708 ABCA12 ATP-binding 
cassette, sub-

family A 
(ABC1), 

member 12 

8.07 -1.25 ichthyosis Knockout mice 
die shortly after 
birth as water 

rapidly 
evaporates from 

their skin; 
glucosylceramide

s transport 
(Jiang et al, 

2009), Harlequin 
ichthyosis 

(Yanagi et al, 
2010) 

(Akiyama et 
al., 2005; Zuo 
et al., 2008) 

8079153 ABHD5 abhydrolase 
domain 

containing 5 

4.76 -1.97 Chanarin 
Dorfman 
syndrome 

Mutation (Schleinitz et 
al., 2005) 

7932616 ABI1 abl-interactor 1 1.94 -1.35 psoriasis  (Sticherling et 
al., 1992) 

7938390 ADM adrenomedullin 2.38 -1.79 atopic 
dermatitis 

Decreased (Kindt et al., 
2007) 

8131614 AHR aryl hydrocarbon 
receptor 

2.26 -2.17 skin 
carcinogenesis 

Consitutive 
activation 

(Ikuta et al., 
2009; Tauchi 
et al., 2005) 

8012309 ALOX12
B 

arachidonate 
12-lipoxygenase, 

12R type 

19.23 -1.34 ichthyosis Knockout mice 
died within 3-5 

hours after birth 

(Epp et al., 
2007) 

7983910 AQP9 aquaporin 9 26.04 -1.79 psoriasis Elevated (Mesko et al.) 
8122058 ARG1 arginase, liver 16.45 -8.41 psoriasis Elevated (Bruch-

Gerharz et al., 
2003) 

8149534 ASAH1 N-
acylsphingosine 
amidohydrolase 

(acid 
ceramidase) 1 

2.18 -1.71 atopic 
dermatitis 

Knockout mice is 
lethal 

(embryonic 
lethal); 

Decreased 

(Arikawa et 
al., 2002; 

Eliyahu et al., 
2007) 

7947230 BDNF brain-derived 
neurotrophic 

factor 

1.78 -1.52 Decreased in 
atopic 

dermatitis 

knockout mice 
died 

(Bartoletti et 
al., 2002; 

Groneberg et 
al., 2007) 

8014008 BLMH bleomycin 
hydrolase 

2.07 -1.66 dermatitis Decrease (Schwartz et 
al., 1999) 

8116818 BMP6 bone 
morphogenetic 

protein 6 

1.88 -1.43 psoriasis Overexpressed (Blessing et 
al., 1996) 

8075600 BPIL2 bactericidal/perm
eability-

increasing 
protein-like 2 

28.94 -1.50 psoriasis Elevated (Mulero et al., 
2002) 

7931859 CALML5 calmodulin-like 5 10.11 -3.04 psoriasis Elevated (Mehul et al., 
2006) 

8026398 CASP14 caspase 14, 
apoptosis-related 

cysteine 
peptidase 

9.19 -1.99 Psoriasis Decrease (Walsh et al., 
2005) 

8079117 CCBP2 chemokine 
binding protein 2 

1.93 -1.87 atopic 
dermatitis 

Elevated (Vestergaard et 
al., 2003) 

1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
Bolded entries are genes essential for the development of epidermal barrier in mice. 
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Appendix B - List of 114 Genes Related to Skin Diseases Based on Literature 
(Refer to Chapter 3, Figure 19) (cont.) 
Transcript 
Cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Skin 
Diseases 

Level 
expressed in 
skin disease 

References 

8097461 CCRN4L CCR4 carbon 
catabolite 

repression 4-like 
(S. cerevisiae) 

3.65 -2.44 atopic 
dermatitis 

Elevated (Yamagami et 
al., 2005) 

8133876 CD36 CD36 molecule 
(thrombospondin 

receptor) 

17.85 -8.66 atopic 
dermatitis 

Dysregulated (Niebuhr et al., 
2009) 

8179716 CDSN corneodesmosin 31.89 1.34 psoriasis Conditional 
knockout mice 

results in 
neonatal death 

due to epidermal 
tearing upon 
mechanical 

stress 

(Allen et al., 
2001; Leclerc 
et al., 2009) 

8063386 CEBPB CCAAT/enhance
r binding protein 
(C/EBP), beta 

2.43 -1.75 mild 
epidermal 

hyperplasia; 
resistant to 
carcinogen- 
induced skin 
tumorigenesis 

Knockout mice 
developed a mild 

epidermal 
hyperplasia 

(Sterneck et 
al., 2006; Zhu 
et al., 1999) 

8179351 CFB complement 
factor B 

1.57 -1.38 atopic 
dermatitis 

Decreased (Weemaes et 
al., 1977) 

8167603 CLCN5 chloride channel 
5 

1.93 -1.28 Dent's disease Mutation (Wang et al., 
2000) 

7921099 CRABP2 cellular retinoic 
acid binding 

protein 2 

2.24 -1.69 psoriasis Elevated (Siegenthaler 
et al., 1992) 

7945663 CTSD cathepsin D 2.70 -1.44 psoriasis Decreased (Chen et al., 
2000) 

8162652 CTSL2 cathepsin L2 3.03 1.71 atopic 
dermatitis 

Decreased (Cheng et al., 
2009) 

7995552 CYLD cylindromatosis 
(turban tumor 

syndrome) 

1.81 -1.65 psoriasis SNPs (Oudot et al., 
2009) 

7929466 CYP2C18 cytochrome 
P450, family 2, 
subfamily C, 

polypeptide 18 

8.15 -5.00 psoriasis Decreased (Helsby et al., 
1998) 

8026424 CYP4F22 cytochrome 
P450, family 4, 
subfamily F, 

polypeptide 22 

18.64 -2.35 lamellar 
ichthyosis 

type 3 

Mutations (Lefevre et al., 
2006) 

7942613 DGAT2 diacylglycerol O-
acyltransferase 

homolog 2 
(mouse) 

16.71 -2.30 psoriasis Decreased; 
knockout mice are 
lipopenic and die 
shortly after birth 

(Liu et al., 
2008; 

Wakimoto et 
al., 2003) 

8046124 DHRS9 dehydrogenase/re
ductase (SDR 

family) member 
9 

14.50 -2.05 Epstein-Barr 
virus lytic 
infection 

 (Jones et al., 
2007) 

8016609 DLX3 distal-less 
homeobox 3 

2.10 -1.36 atopic 
dermatitis, 
psoriasis 

Knockout mice 
died midgestation 

(Hwang et al.; 
Mayer et al., 

2010; Morasso 
et al., 1999) 

8022728 DSC1 desmocollin 1 16.56 -2.81 dermatitis Deficient mice 
developed 
dermatitis 

(Chidgey et al., 
2001) 

1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
Bolded entries are genes essential for the development of epidermal barrier in mice. 
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Appendix B - List of 114 Genes Related to Skin Diseases Based on Literature 
(Refer to Chapter 3, Figure 19) (cont.) 
Transcript 
Cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Skin 
Diseases 

Level 
expressed in 
skin disease 

References 

8020724 DSG1 desmoglein 1 11.67 -1.60 Netherton 
syndrome 

Decrease (Descargues et 
al., 2006) 

8020762 DSG3 desmoglein 3 
(pemphigus 

vulgaris antigen) 

1.62 1.19 pemphigus 
vulgaris; 

overexpressed 
in head and 
neck cancer 

 (Capon et al., 
2009; Chen et 

al., 2007) 

7905220 ECM1 extracellular 
matrix protein 1 

2.89 1.43 lipid 
proteinosis 

 (Mirancea et 
al., 2007) 

8127767 ELOVL4 elongation of 
very long chain 
fatty acids like 4 

11.12 -1.92 Stargardt’s 
disease 

Knockout mice 
lead to neonatal 

death 

(Li et al., 
2007b; 

Vasireddy et 
al., 2007) 

8095728 EREG epiregulin 1.78 -1.51 dermatitis Deficient mice 
developed chronic 

dermatitis 

(Shirasawa et 
al., 2004) 

8147049 FABP5 fatty acid binding 
protein 5 

(psoriasis-
associated) 

6.04 -1.88 atopic 
dermatitis 

Elevated (Yamane et al., 
2009) 

7920165 FLG filaggrin 55.43 -1.54 atopic 
dermatitis 

Mutation (Scharschmidt 
et al., 2009) 

8128956 FYN FYN oncogene 
related to SRC, 

FGR, YES 

1.59 -1.37 epidermal 
hyperplasia 

Increase (Li et al., 
2007a) 

7926105 GATA3 GATA binding 
protein 3 

2.05 -1.62 atopic 
dermatitis 

Knockout mice 
died at E11; lipid 
defect; increase 

in atopic 
dermatitis 

(Arakawa et 
al., 2004; de 

Guzman 
Strong et al., 

2006; 
Pandolfi et al., 

1995) 
8121749 GJA1 gap junction 

protein, alpha 1, 
43kDa 

2.02 -1.55 knockout mice 
die after birth 
or survive up 

to 5 hours 
after birth; 

oculodentodig
ital dysplasia 

Mutation (Gong et al., 
2006; 

Paznekas et al., 
2003) 

7970448 GJB6 gap junction 
protein, beta 6, 

30kDa 

6.25 -2.22 hidrotic 
ectodermal 
dysplasia 

Mutation (Essenfelder et 
al., 2004) 

8006940 GRB7 growth factor 
receptor-bound 

protein 7 

2.73 1.49 atopic 
dermatitis 

Decreased (Yoon et al., 
2005) 

7905733 HAX1 HCLS1 
associated 
protein X-1 

1.64 -1.62 psoriasis Elevated (Mirmohamma
dsadegh et al., 

2003) 
8114572 HBEGF heparin-binding 

EGF-like growth 
factor 

2.86 -3.12 psoriasis Elevated (Zheng et al., 
2003) 

8072678 HMOX1 heme oxygenase 
(decycling) 1 

3.94 1.93 atopic 
dermatitis 

Elevated (Kirino et al., 
2008) 

7920155 HRNR hornerin 48.67 -2.20 atopic 
dermatitis 

Elevated (Wu et al., 
2009b) 

8139488 IGFBP3 insulin-like 
growth factor 

binding protein 3 

7.15 -6.11 psoriasis Elevated (Ozden et al., 
2008) 

1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
Bolded entries are genes essential for the development of epidermal barrier in mice. 
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Appendix B - List of 114 Genes Related to Skin Diseases Based on Literature 
(Refer to Chapter 3, Figure 19) (cont.) 
Transcript 
Cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Skin 
Diseases 

Level 
expressed in 
skin disease 

References 

8044574 IL1RN interleukin 1 
receptor 

antagonist 

2.77 1.27 dermatitis, 
psoriasis 

SNPs (Oudot et al., 
2009) 

7909261 IL20 interleukin 20 1.70 -1.54 psoriasis Elevated (Wang et al., 
2006) 

8129837 IL20RA interleukin 20 
receptor, alpha 

6.61 -2.79 psoriasis Haplotype (Kingo et al., 
2008) 

8048227 IL8RB interleukin 8 
receptor, beta 

7.82 -1.75 psoriasis Elevated (Nomura et al., 
2003) 

8050719 ITSN2 intersectin 2 2.42 -1.22 atopic 
dermatitis 

Elevated (Hashida et al., 
2003) 

8039884 KIR2DL5
A 

killer cell 
immunoglobulin-
like receptor, two 

domains, long 
cytoplasmic tail, 

5A 

1.57 -1.29 psoriasis Elevated (Suzuki et al., 
2004) 

8163002 KLF4 Kruppel-like 
factor 4 (gut) 

6.29 -1.37 Skin 
squamous 

cell 
carcinoma, 
hyperplasia, 

dysplasia 

Knockout mice 
die postnatally 

due to 
dehydration 

(Ehlermann 
et al., 2003; 
Huang et al., 

2005; Segre et 
al., 1999) 

8038633 KLK1 kallikrein 1 2.32 -1.66 atopic 
dermatitis 

Elevated (Komatsu et 
al., 2007) 

8038747 KLK12 kallikrein-related 
peptidase 12 

11.22 -1.41 atopic 
dermatitis 

Elevated (Komatsu et 
al., 2007) 

8038670 KLK5 kallikrein-related 
peptidase 5 

2.33 -1.14 atopic 
dermatitis 

Elevated (Komatsu et 
al., 2007) 

8038683 KLK6 kallikrein-related 
peptidase 6 

18.60 1.41 atopic 
dermatitis 

Elevated (Komatsu et 
al., 2007) 

8038707 KLK8 kallikrein-related 
peptidase 8 

5.21 -1.17 atopic 
dermatitis 

Elevated (Komatsu et 
al., 2007) 

7963491 KRT1 keratin 1 42.74 -3.35 hyperkeratosis
; ichthyosis 

Mutations (Bolling et al.; 
Lacz et al., 

2005; Muller 
et al., 2006) 

8015104 KRT10 keratin 10 22.67 -2.50 epidermolytic 
ichtyosis; 

epidermolytic 
hyperkeratosis

; acanthosis 

Mutations (Covaciu et al., 
2010; Muller 
et al., 2006; 
Porter et al., 

1998) 
8015323 KRT13 keratin 13 6.48 -3.18 White Sponge 

Nevus 
(acanthosis); 

Mutations (Rugg et al., 
1999; Sun et 

al., 2009) 
8015376 KRT16 keratin 16 2.91 -1.17 benign 

hyperplasia; 
pachyonychia 

congenita 

 (Gruber et al., 
2009; Haider 
et al., 2006) 

7963479 KRT2 keratin 2 3.75 -1.95 ichthyosis 
bullosa of 
Siemens 

Mutations (Takizawa et 
al., 2000) 

7963534 KRT4 keratin 4 12.95 -6.29 hyperkeratosis
; ichthyosis 

Mutations (Ness et al., 
1998; Pavez 
Lorie et al., 

2009) 
7963406 KRT6B keratin 6B 1.61 -1.10 pachyonychia 

congenita 
 (Oh et al., 

2006) 
1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
Bolded entries are genes essential for the development of epidermal barrier in mice. 
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Appendix B - List of 114 Genes Related to Skin Diseases Based on Literature 
(Refer to Chapter 3, Figure 19) (cont.) 
Transcript 
Cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Skin 
Diseases 

Level 
expressed in 
skin disease 

References 

8015357 KRT9 keratin 9 4.24 -3.39 epidermolytic 
palmoplantar 
keratoderma 

Mutations (Corden and 
McLean, 1996) 

8036072 KRTDAP keratinocyte 
differentiation-

associated 
protein 

21.19 -2.07 psoriasis Elevated (Tsuchida et 
al., 2004) 

7920191 LCE3A late cornified 
envelope 3A 

2.01 3.00 psoriasis SNPs (Zhang, 2009) 

7920185 LCE3D late cornified 
envelope 3D 

52.44 1.81 psoriasis SNPs (Zhang, 2009) 

8158167 LCN2 lipocalin 2 7.69 2.61 psoriasis Elevated (Lee et al., 
2008) 

7905563 LOR loricrin 44.32 -19.49 psoriasis, 
dermatitis 

Decrease (Hohl, 1993) 

8153346 LYNX1 Ly6/neurotoxin 1 9.06 -1.32 psoriasis Elevated (Tsuji et al., 
2003) 

8119016 MAPK13 mitogen-
activated protein 

kinase 13 

2.00 -1.14 psoriasis Elevated (Johansen et 
al., 2005) 

8000811 MAPK3 mitogen-
activated protein 

kinase 3 

1.53 1.57 psoriasis Elevated (Johansen et 
al., 2005) 

8081386 NFKBIZ nuclear factor of 
kappa light 

polypeptide gene 
enhancer in B-
cells inhibitor, 

zeta 

1.51 1.23 atopic 
dermatitis 

Deficient mice 
developed atopic 

dermatitis 

(Shiina et al., 
2004) 

7986675 NIPA1 non imprinted in 
Prader-

Willi/Angelman 
syndrome 1 

1.71 -1.16 Ichthyosis Mutation (Lefevre et al., 
2004) 

8109563 NIPAL4 NIPA-like 
domain 

containing 4 

5.16 -1.21 congenital 
ichtyosis 

Mutation (Dahlqvist et 
al., 2007) 

7995539 NOD2 nucleotide-
binding 

oligomerization 
domain 

containing 2 

3.05 -1.67 psoriasis Mutation (Young et al., 
2003a) 

8105908 OCLN occludin 9.02 -2.30 psoriasis Widely expressed (Yoshida et al., 
2001) 

8075316 OSM oncostatin M 1.55 -1.19 psoriasis, 
atopic 

dermatitis 

Elevated (Boniface et 
al., 2007) 

7898413 PADI1 peptidyl arginine 
deiminase, type I 

2.97 1.70 psoriasis Decreased (Chavanas et 
al., 2006) 

7920228 PGLYRP
4 

peptidoglycan 
recognition 
protein 4 

15.32 -2.08 psoriasis SNPs (Sun et al., 
2006) 

8171418 PIGA phosphatidylino
sitol glycan 

anchor 
biosynthesis, 

class A 

1.56 -1.83 ichthyosis Knockout mice 
died within a few 
days after birth, 

Harlequin 
ichthyosis-like 

features; 
mutation 

(Hara-
Chikuma et 

al., 2004; 
Tarutani et 
al., 1997) 

1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
Bolded entries are genes essential for the development of epidermal barrier in mice. 
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Appendix B - List of 114 Genes Related to Skin Diseases Based on Literature 
(Refer to Chapter 3, Figure 19) (cont.) 
Transcript 
Cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Skin 
Diseases 

Level 
expressed in 
skin disease 

References 

8075468 PLA2G3 phospholipase 
A2, group III 

1.90 -1.45 hyperkeratosis
, acanthosis 

Overexpressed (Sato et al., 
2009) 

7987792 PLA2G4
D 

phospholipase 
A2, group IVD 

(cytosolic) 

6.93 -1.38 psoriasis, 
atopic 

dermatitis 

Elevated (Chiba et al., 
2004) 

8041763 PRKCE protein kinase C, 
epsilon 

19.56 -8.40 hyperplasia Overexpressed (Li et al., 
2005) 

8001007 PRSS8 protease, serine, 
8 

2.23 1.34 ichthyosis Decreased (Alef et al., 
2009) 

7975545 PSEN1 presenilin 1 1.58 -1.44 skin 
tumorigenesis 

 (Xia et al., 
2001) 

8124865 PSORS1C
2 

psoriasis 
susceptibility 1 

candidate 2 

1.81 1.14 psoriasis SNPs (Holm et al., 
2003) 

7922976 PTGS2 prostaglandin-
endoperoxide 

synthase 2 
(prostaglandin 
G/H synthase 

and 
cyclooxygenase) 

3.70 -2.37 dermatitis, 
human  

nonmelanoma 

Elevated (Ahn et al., 
2010; An et 
al., 2002) 

8150757 RB1CC1 RB1-inducible 
coiled-coil 1 

2.60 -1.24 acanthosis, 
hyperkeratosis 

Double knockout 
with p53 

(Wei et al., 
2009) 

8025278 RETN resistin 1.68 -1.54 psoriasis Elevated (Coimbra et 
al.) 

7920252 S100A7 S100 calcium 
binding protein 

A7 

27.47 1.98 atopic 
dermatitis, 
psoriasis 

Elevated (Glaser et al., 
2009) 

8150889 SDR16C5 short chain 
dehydrogenase/re

ductase family 
16C, member 5 

12.84 -4.22 psoriasis Increased (Matsuzaka et 
al., 2002) 

8021603 SERPINB
13 

serpin peptidase 
inhibitor, clade B 

(ovalbumin), 
member 13 

4.13 -1.36 psoriasis Elevated (Abts et al., 
2001) 

8023696 SERPINB
3 

serpin peptidase 
inhibitor, clade B 

(ovalbumin), 
member 3 

15.24 -1.51 atopic 
dermatitis 

Elevated (Mitsuishi et 
al., 2005) 

8023688 SERPINB
4 

serpin peptidase 
inhibitor, clade B 

(ovalbumin), 
member 4 

14.47 -1.38 atopic 
dermatitis 

Elevated (Yamane et al., 
2009) 

7928171 SGPL1 sphingosine-1-
phosphate lyase 

1 

1.62 -1.46 atopic 
dermatitis in 

dog 

Elevated; 
knockout mice 
died 15 weeks 

after birth due to 
non-lymphoid 

lesions 

(Vogel et al., 
2009; Wood et 

al., 2009) 

8048717 SGPP2 sphingosine-1-
phosphate 

phosphotase 2 

10.21 -2.79 psoriasis Elevated (Mechtcheriak
ova et al., 

2007) 
8158224 SLC27A4 solute carrier 

family 27 (fatty 
acid 

transporter), 
member 4 

1.72 -1.19 ichthyosis Knockout mice 
died shortly after 

birth; 
hyperkeratosis; 

mutations 

(Herrmann et 
al., 2005; 

Herrmann et 
al., 2003; Klar 

et al., 2009) 
1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
Bolded entries are genes essential for the development of epidermal barrier in mice. 
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Appendix B - List of 114 Genes Related to Skin Diseases Based on Literature 
(Refer to Chapter 3, Figure 19) (cont.) 
Transcript 
Cluster ID 

Gene 
Symbol 

Gene 
Description 

Density 
FC1 

EGF 
FC2 

Skin 
Diseases 

Level 
expressed in 
skin disease 

References 

8153336 SLURP1 secreted 
LY6/PLAUR 

domain 
containing 1 

1.86 -1.36 Mal de 
Meleda 

Mutation (Favre et al., 
2007) 

8109001 SPINK5 serine peptidase 
inhibitor, Kazal 

type 5 

21.52 -1.38 Netherton 
syndrome 

Mutation (Geyer et al., 
2005) 

7978222 TGM1 null mice died 
because of 
impaired 

barrier skin 
functiontransgl
utaminase 1 (K 

polypeptide 
epidermal type 

I, protein-
glutamine-
gamma-

glutamyltransfe
rase) 

5.36 -1.38 lamellar 
ichthyosis 

Knockout mice 
died 5 hrs after 

birth due to 
impaired skin 

barrier function 

(Huber et al., 
1995; 

Kuramoto et 
al., 2002; 

Matsuki et al., 
1998) 

8060432 TGM3 transglutaminase 
3 (E polypeptide, 

protein-
glutamine-
gamma-

glutamyltransfera
se) 

3.13 -1.86 Darier's 
disease 

Misregulated (Candi et al., 
2002) 

7988050 TGM5 transglutaminase 
5 

5.01 -1.85 ichthyosis Misregulated (Candi et al., 
2002) 

8018966 TIMP2 TIMP 
metallopeptidase 

inhibitor 2 

2.75 1.27 eczema Decreased (Miyoshi et al., 
2005) 

8092169 TNFSF10 tumor necrosis 
factor (ligand) 
superfamily, 
member 10 

2.75 -2.40 atopic 
dermatitis 

Elevated (Heishi et al., 
2002) 

8107270 TSLP thymic stromal 
lymphopoietin 

2.01 -2.24 atopic 
dermatitis 

Elevated (Edwards, 
2008) 

8157216 UGCG UDP-glucose 
ceramide 

glucosyltransfer
ase 

2.72 -1.27 Gaucher 
disease 

Conditional 
knockout mice 
had extreme 

TEWL leading 
to death  4 days 

after birth. 

(Beutler and 
West, 2002; 

Jennemann et 
al., 2007) 

8119898 VEGFA vascular 
endothelial 

growth factor A 

1.97 -2.04 acanthosis Knockout mice 
died in utero due 
to defect in blood 
island formation, 

elevated 

(Carmeliet et 
al., 1999; 

Teige et al., 
2009; Xia et 
al., 2003) 

8019541 ZNF750 zinc finger 
protein 750 

6.15 -1.42 psoriasis Mutation (Yang et al., 
2008) 

1Density FC: fold change between the 50% and 100% confluent cell density untreated samples. 
2EGF FC: fold change between control and EGF at 100% confluent cell density. 
Bolded entries are genes essential for the development of epidermal barrier in mice. 
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Appendix C – Literature Support of the 245 Known Transcriptional Regulators 
(Refer to Chapter 4, Tables 7 and 8) 

Probe Set Gene 
Symbol 

Gene title MAX 
FC1 

MIN 
FC2 

Type of 
transcriptional 

regulators 

Reference 

221011_s_at LBH limb bud and heart 
development homolog 

(mouse) 

159.74 1.00 activator (Briegel and 
Joyner, 2001) 

204420_at FOSL1 FOS-like antigen 1 77.30 2.19 TF (Finzer et al., 
2000) 

228964_at PRDM1 PR domain containing 1, 
with ZNF domain 

34.29 2.16 repressor (Magnusdottir et 
al., 2007) 

202768_at FOSB FBJ murine osteosarcoma 
viral oncogene homolog B 

33.03 -1.00 TF (Ulery et al., 
2006) 

228033_at E2F7 E2F transcription factor 7 30.66 1.14 repressor (Endo-Munoz et 
al., 2009) 

206877_at MXD1 MAX dimerization protein 
1 

29.95 1.00 repressor (Grandori et al., 
2000) 

202935_s_at SOX9 SRY (sex determining 
region Y)-box 9 

(campomelic dysplasia, 
autosomal sex-reversal) 

27.98 3.00 TF (Pan et al., 
2008) 

206127_at ELK3 ELK3, ETS-domain protein 
(SRF accessory protein 2) 

24.38 1.02 repressor or 
activator 

(Chen et al., 
2003; Wasylyk 

et al., 2005) 
209189_at FOS v-fos FBJ murine 

osteosarcoma viral 
oncogene homolog 

24.33 -2.46 TF (Durchdewald et 
al., 2009) 

209878_s_at RELA v-rel reticuloendotheliosis 
viral oncogene homolog A, 
nuclear factor of kappa light 
polypeptide gene enhancer 
in B-cells 3, p65 (avian) 

17.64 -4.63 TF/activator (Ghosh and 
Karin, 2002) 

36711_at MAFF v-maf musculoaponeurotic 
fibrosarcoma oncogene 

homolog F (avian) 

15.58 1.70 TF (Motohashi et 
al., 2004) 

229404_at TWIST2 twist homolog 2 
(Drosophila) 

13.90 -1.18 repressor (Lee et al., 
2003) 

226319_s_at LOC64481
1 /// 

THOC4 

THO complex 4 /// similar 
to THO complex subunit 4 
(Tho4) (Ally of AML-1 and 

LEF-1) (Transcriptional 
coactivator Aly/REF) 

(bZIP-enhancing factor 
BEF) 

12.26 -1.21 coactivator (Mertz et al., 
2007) 

211834_s_at TP63 tumor protein p63 11.58 -1.15 activator (Senoo et al., 
2007; Yang et 

al., 1998; Zhu et 
al., 2007) 

224833_at ETS1 v-ets erythroblastosis virus 
E26 oncogene homolog 1 

(avian) 

11.13 1.40 TF (Jung et al., 
2005) 

1555832_s_at KLF6 Kruppel-like factor 6 9.60 1.45 activator Rubinstein et al, 
2004 

1552477_a_at IRF6 interferon regulatory factor 
6 

9.09 -1.14 TF (Ben et al., 
2005) 

238482_at KLF7 Kruppel-like factor 7 
(ubiquitous) 

9.08 1.27 TF/coactivator (Matsumoto et 
al., 1998) 

1560224_at AHCTF1 AT hook containing 
transcription factor 1 

9.04 1.00 TF (Okita et al., 
2004; Rasala et 

al., 2006) 
1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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Appendix C - Literature Support of the 245 Known Transcriptional Regulators 
(Refer to Chapter 4, Tables 7 and 8) 

Probe Set Gene 
Symbol 

Gene title MAX 
FC1 

MIN 
FC2 

Type of 
transcriptional 

regulators 

Reference 

201169_s_at BHLHB2 basic helix-loop-helix 
domain containing, class B, 

2 

8.18 1.09 repressor (Iizuka and 
Horikawa, 2008; 

Nakashima et 
al., 2008; 

Rossner et al., 
2008) 

226711_at FOXN2 forkhead box N2 7.86 1.72 TF (Li et al., 
1992)Li et al, 

1992 
1554311_a_at SUPT6H suppressor of Ty 6 homolog 

(S. cerevisiae) 
7.82 2.62 chromatin 

structure 
(Chiang et al., 

1996; Yoh et al., 
2007) 

206788_s_at CBFB core-binding factor, beta 
subunit 

7.74 -1.05 coactivator (Sakakura et al., 
2005) 

205659_at HDAC9 histone deacetylase 9 7.42 -1.01 corepressor (Zhang et al., 
2001) 

1554411_at CTNNB1 catenin (cadherin-associated 
protein), beta 1, 88kDa 

7.20 1.28 coactivator (Zhu and Watt, 
1999) 

44783_s_at HEY1 hairy/enhancer-of-split 
related with YRPW motif 1 

6.98 -1.07 repressor (Fischer et al., 
2005) 

40446_at PHF1 PHD finger protein 1 6.64 -1.04 repressor (Sarma et al., 
2008) 

227261_at KLF12 Kruppel-like factor 12 6.60 1.03 corepressor (Roth et al., 
2000) 

209651_at TGFB1I1 transforming growth factor 
beta 1 induced transcript 1 

6.47 -1.10 coactivator (Inui et al., 
2007) 

228634_s_at CSDA Cold shock domain protein 
A 

6.15 -1.59 repressor (Coles et al., 
1996) 

210541_s_at TRIM27 tripartite motif-containing 
27 

6.00 1.01 repressor (Bloor et al., 
2005) 

204790_at SMAD7 SMAD family member 7 6.00 1.11 TF/activator (Liu et al., 
2003) 

208003_s_at NFAT5 nuclear factor of activated 
T-cells 5, tonicity-

responsive 

5.38 -1.15 TF (Navarro et al., 
2008) 

228625_at CITED4 Cbp/p300-interacting 
transactivator, with 

Glu/Asp-rich carboxy-
terminal domain, 4 

5.35 -1.32 coactivator (Labalette et al., 
2004) 

213032_at NFIB nuclear factor I/B 5.06 -1.08 TF/activator (Mukhopadhyay 
et al., 2007) 

200879_s_at EPAS1 endothelial PAS domain 
protein 1 

4.97 -2.57 activator (Conrad et al., 
1999) 

225289_at STAT3 signal transducer and 
activator of transcription 3 

(acute-phase response 
factor) 

4.93 -2.02 TF (Brantley et al., 
2008; Snyder et 

al., 2008) 

1552487_a_at BNC1 basonuclin 1 4.84 1.40 TF (Matsuzaki et 
al., 2004) 

236429_at ZNF83 zinc finger protein 83 4.67 1.40 TF (Marine et al., 
1994) 

1555611_s_at MBD1 methyl-CpG binding 
domain protein 1 

4.65 -1.52 corepressor (Fujita et al., 
2000) 

216997_x_at TLE4 transducin-like enhancer of 
split 4 (E(sp1) homolog, 

Drosophila) 

4.47 -1.77 corepressor (Brantjes et al., 
2001; Eberhard 

et al., 2000) 
202875_s_at PBX2 pre-B-cell leukemia 

homeobox 2 
4.39 1.75 activator (Okada et al., 

2003) 
1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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Appendix C - Literature Support of the 245 Known Transcriptional Regulators 
(Refer to Chapter 4, Tables 7 and 8) 

Probe Set Gene 
Symbol 

Gene title MAX 
FC1 

MIN 
FC2 

Type of 
transcriptional 

regulators 

Reference 

206307_s_at FOXD1 forkhead box D1 4.28 1.97 TF (Ernstsson et al., 
1996) 

215111_s_at TSC22D1 TSC22 domain family, 
member 1 

4.23 1.32 repressor (Choi et al., 
2005; Iida et al., 
2007; Sommer 

et al., 2006) 
214600_at TEAD1 TEA domain family 

member 1 (SV40 
transcriptional enhancer 

factor) 

4.12 -1.06 activator (Xiao et al., 
1991) 

211603_s_at ETV4 ets variant gene 4 (E1A 
enhancer binding protein, 

E1AF) 

4.10 -1.05 activator Zhu et al, 2005 

203258_at DRAP1 DR1-associated protein 1 
(negative cofactor 2 alpha) 

4.06 -1.42 repressor/corepres
sor 

(Castano et al., 
2000; 

Mermelstein et 
al., 1996) 

201417_at SOX4 SRY (sex determining 
region Y)-box 4 

3.99 1.10 TF (Farr et al., 
1993) 

206675_s_at SKIL SKI-like oncogene 3.93 1.21 repressor (Fitsialos et al., 
2007) 

228785_at ZNF281 Zinc finger protein 281 3.89 1.96 repressor (Law et al., 
1999) 

221763_at JMJD1C jumonji domain containing 
1C 

3.70 1.37 coactivator (Wolf et al., 
2007) 

210971_s_at ARNTL aryl hydrocarbon receptor 
nuclear translocator-like 

3.66 -3.87 TF/coactivator? (Hogenesch et 
al., 1998) 

1555639_a_at RBM14 RNA binding motif protein 
14 

3.66 -1.01 coactivator Yang et al, 2007 

208735_s_at CTDSP2 CTD (carboxy-terminal 
domain, RNA polymerase 
II, polypeptide A) small 

phosphatase 2 

3.62 -1.34 activator (Thompson et 
al., 2006) 

200919_at PHC2 polyhomeotic homolog 2 
(Drosophila) 

3.58 1.09 repressor (Gunster et al., 
1997) 

219729_at PRRX2 paired related homeobox 2 3.56 -1.18 TF (Mitchell et al., 
2006) 

203313_s_at TGIF1 TGFB-induced factor 
homeobox 1 

3.51 1.42 corepressor of 
SMAD2 

(Hamid et al., 
2008; Wotton et 

al., 2001; 
Wotton et al., 

1999) 
224760_at SP1 Sp1 transcription factor 3.42 -1.06 TF (Mora-Lopez et 

al., 2008) 
205375_at MDFI MyoD family inhibitor 3.42 -1.62 repressor (Chen et al., 

1996; Ma et al., 
2003) 

201368_at ZFP36L2 zinc finger protein 36, C3H 
type-like 2 

3.41 1.17 TF (Nie et al., 
1995) 

207109_at POU2F3 POU class 2 homeobox 3 3.40 -4.89 repressor (Shiina et al., 
2004) 

226206_at MAFK v-maf musculoaponeurotic 
fibrosarcoma oncogene 

homolog K (avian) 

3.39 1.71 repressor (Dhakshinamoor
thy and Jaiswal, 

2000) 
225798_at JAZF1 JAZF zinc finger 1 3.35 -1.02 repressor (Nakajima et al., 

2004) 
206604_at OVOL1 ovo-like 1(Drosophila) 3.31 -1.34 repressor (Nair et al., 

2007) 
1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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203874_s_at SMARCA
1 

SWI/SNF related, matrix 
associated, actin dependent 

regulator of chromatin, 
subfamily a, member 1 

3.27 1.05 chromatin 
structure 

(Banting et al., 
2005) 

1554980_a_at ATF3 activating transcription 
factor 3 

3.20 1.00 corepressor, 
repressor of Nrf2 

(Wang et al., 
2007) 

201465_s_at JUN jun oncogene 3.14 1.14 TF (Bohmann et al., 
1987; Chen and 
Chang, 2000) 

210086_at HR hairless homolog (mouse) 3.05 -1.96 TF (Ahmad et al., 
1998) 

225265_at RBMS1 RNA binding motif, single 
stranded interacting protein 

1 

3.04 1.23 activator/represso
r 

Normura et al, 
2005 

1565254_s_at ELL elongation factor RNA 
polymerase II 

3.02 1.04 TF (Kong et al., 
2005) 

232231_at RUNX2 runt-related transcription 
factor 2 

2.98 1.02 activator (Pratap et al., 
2008) 

206173_x_at GABPB2 GA binding protein 
transcription factor, beta 

subunit 2 

2.98 1.03 TF (Watanabe et 
al., 1993) 

219199_at AFF4 AF4/FMR2 family, member 
4 

2.93 1.23 repressor (Niedzielski et 
al., 2007) 

1558560_s_at BLZF1 basic leucine zipper nuclear 
factor 1 (JEM-1) 

2.90 -1.12 coactivator (Duprez et al., 
1997; Tong et 

al., 1999) 
235791_x_at CHD1 chromodomain helicase 

DNA binding protein 1 
2.90 1.36 chromatin 

structure 
(Woodage et al., 

1997) 
226952_at EAF1 ELL associated factor 1 2.86 -1.22 activator (Simone et al., 

2001) 
210655_s_at FOXO3 forkhead box O3 2.85 -1.55 activator (Brunet et al., 

1999) 
219657_s_at KLF3 Kruppel-like factor 3 

(basic) 
2.83 -1.68 repressor (Perdomo et al., 

2005; Sue et al., 
2008) 

202171_at VEZF1 vascular endothelial zinc 
finger 1 

2.82 1.22 TF (Aitsebaomo et 
al., 2001; 

Miyashita et al., 
2004) 

210365_at RUNX1 runt-related transcription 
factor 1 (acute myeloid 

leukemia 1; aml1 oncogene) 

2.82 -1.02 co-activator (Wildey and 
Howe, 2009) 

201862_s_at LRRFIP1 leucine rich repeat (in FLII) 
interacting protein 1 

2.81 1.21 repressor (Rikiyama et al., 
2003; Suriano et 

al., 2005) 
210554_s_at CTBP2 C-terminal binding protein 

2 
2.80 1.06 corepressor (Zhao et al., 

2006) 
202599_s_at NRIP1 nuclear receptor interacting 

protein 1 
2.73 1.17 coactivator/repres

sor 
(Rytinki and 

Palvimo, 2008; 
Zschiedrich et 

al., 2008) 
201332_s_at STAT6 signal transducer and 

activator of transcription 6, 
interleukin-4 induced 

2.72 -1.91 activator (Aoudjehane et 
al., 2008) 

201845_s_at RYBP RING1 and YY1 binding 
protein 

2.71 1.13 corepressor/repres
sor 

(Garcia et al., 
1999) 

223780_s_at MED13 mediator complex subunit 
13 

2.71 1.11 coactivator (Rachez et al., 
1999) 

1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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227111_at ZBTB34 zinc finger and BTB 
domain containing 34 

2.70 1.13 repressor (Qi et al., 2006) 

204341_at TRIM16 
/// 

TRIM16L 

tripartite motif-containing 
16 /// tripartite motif-

containing 16-like 

2.68 1.00 TF (Beer et al., 
2002) 

219850_s_at EHF ets homologous factor 2.66 1.05 activator/represso
r 

(Kas et al., 
2000; Silverman 

et al., 2002) 
204512_at HIVEP1 human immunodeficiency 

virus type I enhancer 
binding protein 1 

2.64 1.12 corepressor (Gaynor et al., 
1991) 

235473_at MED6 Mediator complex subunit 6 2.63 -1.39 coactivator (Lee et al., 
1997) 

243683_at MORF4L
2 

Mortality factor 4 like 2 2.62 -2.18 activator/represso
r 

(Tominaga et 
al., 2003) 

218284_at SMAD3 SMAD family member 3 2.62 -1.12 activator (Ashcroft et al., 
1999; 

Descargues et 
al., 2008; 

Flanders et al., 
2002) 

227718_at PURB purine-rich element binding 
protein B 

2.60 -1.06 repressor (Knapp et al., 
2006; Knapp et 
al., 2007; Zhang 

et al., 2008) 
203275_at IRF2 interferon regulatory factor 

2 
2.56 -1.30 repressor (Chae et al., 

2008; Han et al., 
2008) 

203394_s_at HES1 hairy and enhancer of split 
1, (Drosophila) 

2.49 -1.53 repressor (Sasai et al., 
1992) 

203739_at ZNF217 zinc finger protein 217 2.35 1.29 repressor (Cowger et al., 
2007) 

202147_s_at IFRD1 interferon-related 
developmental regulator 1 

2.33 -1.53 corepressor/coacti
vator 

(Batta and 
Kundu, 2007; 

Dieplinger et al., 
2007) 

223586_at ARNTL2 aryl hydrocarbon receptor 
nuclear translocator-like 2 

2.30 1.20 TF, activator (Ikeda et al., 
2000; 

Schoenhard et 
al., 2002) 

224013_s_at SOX7 SRY (sex determining 
region Y)-box 7 

2.24 -3.24 activator (Niimi et al., 
2004) 

217729_s_at AES amino-terminal enhancer of 
split 

2.20 -2.11 repressor/corepres
sor 

(Liu et al., 
2002a) 

200049_at MYST2 MYST histone 
acetyltransferase 2 

2.18 -2.68 chromatin 
structure 

(Georgiakaki et 
al., 2006; Iizuka 

and Stillman, 
1999) 

225539_at ZNF295 zinc finger protein 295 2.16 -2.93 repressor (Wang et al., 
2005) 

1559449_a_at ZNF254 Zinc finger protein 254 1.98 -6.17 TF (Han et al., 
1999) 

223714_at ZNF256 zinc finger protein 256 1.95 -3.16 repressor (Suzuki et al., 
2008) 

202431_s_at MYC v-myc myelocytomatosis 
viral oncogene homolog 

(avian) 

1.95 -1.03 TF (Murphy et al., 
2004) 

202191_s_at GAS7 growth arrest-specific 7 1.93 -1.12 TF (Ju et al., 1998) 

1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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209292_at ID4 Inhibitor of DNA binding 4, 
dominant negative helix-

loop-helix protein 

1.93 -4.84 corepressor (Pagliuca et al., 
1995) 

1553613_s_at FOXC1 forkhead box C1 1.92 -1.70 TF (Berry et al., 
2006; Berry et 

al., 2005) 
204908_s_at BCL3 B-cell CLL/lymphoma 3 1.91 -1.08 activator (Bours et al., 

1993) 
236128_at ZNF91 zinc finger protein 91 1.88 -4.27 repressor (Nishimura et 

al., 2001) 
218486_at KLF11 Kruppel-like factor 11 1.87 1.08 repressor (Ellenrieder et 

al., 2002) 
228483_s_at TAF9B TAF9B RNA polymerase 

II, TATA box binding 
protein (TBP)-associated 

factor, 31kDa 

1.76 -2.40 coactivator (Lu and Levine, 
1995) 

238520_at TRERF1 Transcriptional regulating 
factor 1 

1.75 -5.95 coactivator (Gizard et al., 
2006) 

208763_s_at TSC22D3 TSC22 domain family, 
member 3 

1.73 -4.91 TF (Vogel et al., 
1996) 

212436_at TRIM33 tripartite motif-containing 
33 

1.73 1.14 repressor (He et al., 2006; 
Venturini et al., 

1999) 
1554415_at TAF5L TAF5-like RNA 

polymerase II, p300/CBP-
associated factor (PCAF)-
associated factor, 65kDa 

1.70 -1.07 coactivator (Kuninger et al., 
2006; Okumura 

et al., 2006) 

219854_at ZNF14 zinc finger protein 14 1.70 -2.86 coactivator (Kouzu-Fujita et 
al., 2009) 

226574_at PSPC1 paraspeckle component 1 1.67 -4.35 coactivator (Kuwahara et 
al., 2006) 

219388_at GRHL2 grainyhead-like 2 
(Drosophila) 

1.64 -5.31 TF (Peters et al., 
2002) 

207980_s_at CITED2 Cbp/p300-interacting 
transactivator, with 

Glu/Asp-rich carboxy-
terminal domain, 2 

1.61 -2.67 coactivator (Qu et al., 2007) 

229500_at SLC30A9 solute carrier family 30 
(zinc transporter), member 

9 

1.61 -1.27 coactivator (Chen et al., 
2005) 

226066_at MITF microphthalmia-associated 
transcription factor 

1.60 -4.61 TF/activator (de la Serna et 
al., 2006) 

213006_at CEBPD CCAAT/enhancer binding 
protein (C/EBP), delta 

1.59 -3.36 activator/TF (Clarkson et al., 
1995) 

213140_s_at SS18L1 synovial sarcoma 
translocation gene on 
chromosome 18-like 1 

1.58 -2.91 activator (Aizawa et al., 
2004) 

225543_at GTF3C4 MRNA full length insert 
cDNA clone EUROIMAGE 

1674211 

1.55 -2.61 TF (Dumay-Odelot 
et al., 2007; 
Hsieh et al., 

1999) 
226652_at USP3 ubiquitin specific peptidase 

3 
1.53 -3.45 chromatin 

structure 
(Nicassio et al., 

2007) 
221827_at RBCK1 RanBP-type and C3HC4-

type zinc finger containing 
1 

1.50 -1.21 TF (Tatematsu et 
al., 2005) 

1559881_s_at ZNF12 zinc finger protein 12 1.49 -4.58 repressor (Zhao et al., 
2006b) 

1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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204069_at MEIS1 Meis homeobox 1 1.49 -15.96 activator (Okada et al., 
2003) 

218149_s_at ZNF395 zinc finger protein 395 1.49 -5.23 repressor (Sichtig et al., 
2007) 

225760_at MYSM1 myb-like, SWIRM and 
MPN domains 1 

1.47 -1.98 coactivator (Zhu et al., 
2007) 

217547_x_at ZNF675 zinc finger protein 675 1.46 -4.30 repressor (Shin et al., 
2002) 

204702_s_at NFE2L3 nuclear factor (erythroid-
derived 2)-like 3 

1.43 -2.34 TF (Nouhi et al., 
2007; 

Sankaranarayan
an and Jaiswal, 

2004) 
227642_at TFCP2L1 Transcription factor CP2-

like 1 
1.42 -1.56 repressor (Rodda et al., 

2001) 
218859_s_at ESF1 ESF1, nucleolar pre-rRNA 

processing protein, 
homolog (S. cerevisiae) 

1.40 -3.39 repressor (Oda et al., 
2004) 

225655_at UHRF1 ubiquitin-like, containing 
PHD and RING finger 

domains, 1 

1.40 -1.45 chromatin 
structure 

(Papait et al., 
2007) 

208670_s_at EID1 EP300 interacting inhibitor 
of differentiation 1 

1.40 -1.08 repressor (Park et al., 
2007) 

223424_s_at ZSCAN2
1 

zinc finger and SCAN 
domain containing 21 

1.39 -4.67 activator (Chowdhury et 
al., 1992) 

227680_at ZNF326 zinc finger protein 326 1.39 -2.73 activator (Lee et al., 
2000) 

235201_at FOXP2 forkhead box P2 1.37 -4.88 TF/repressor (Zhou et al., 
2008) 

209105_at NCOA1 nuclear receptor coactivator 
1 

1.37 -2.48 coactivator (Yuan and Xu, 
2007) 

225026_at CHD6 chromodomain helicase 
DNA binding protein 6 

1.37 -2.79 chromatin 
structure 

(Thompson et 
al., 2003) 

200779_at ATF4 activating transcription 
factor 4 (tax-responsive 
enhancer element B67) 

1.36 -1.14 activator (Liang and Hai, 
1997) 

203204_s_at JMJD2A jumonji domain containing 
2A 

1.36 -2.85 repressor (Zhang et al., 
2005a) 

212420_at ELF1 E74-like factor 1 (ets 
domain transcription factor) 

1.36 -2.75 activator (Oettgen et al., 
1997) 

219551_at EAF2 ELL associated factor 2 1.35 -11.40 activator (Jiang et al., 
2007; Xiao et 

al., 2006) 
244743_x_at LOC7302

95 /// 
LOC7312

65 /// 
ZNF138 

zinc finger protein 138 /// 
similar to Zinc finger 

protein 431 

1.34 -3.39 repressor (Tommerup and 
Vissing, 1995) 

222028_at ZNF45 zinc finger protein 45 1.33 -2.68 TF (Shannon and 
Stubbs, 1998) 

211778_s_at OVOL2 ovo-like 2 (Drosophila) 1.31 -6.56 repressor (Wells et al., 
2009) 

223506_at ZC3H8 zinc finger CCCH-type 
containing 8 

1.31 -2.72 repressor (Hwang et al., 
2002) 

231929_at IKZF2 IKAROS family zinc finger 
2 (Helios) 

1.29 -2.77 TF/activator (Kelley et al., 
1998; Rebollo 
and Schmitt, 

2003) 
1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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207147_at DLX2 distal-less homeobox 2 1.29 -6.52 TF? (Ozcelik et al., 
1992) 

1553348_a_at NFX1 nuclear transcription factor, 
X-box binding 1 

1.28 -3.19 TF/repressor (Song et al., 
1994) 

227884_at TAF15 TAF15 RNA polymerase II, 
TATA box binding protein 
(TBP)-associated factor, 

68kDa 

1.27 -4.55 coactivator (Lee et al., 
2004) 

212462_at MYST4 MYST histone 
acetyltransferase 

(monocytic leukemia) 4 

1.27 -3.08 coactivator (Merson et al., 
2006; Pelletier 
et al., 2002) 

208859_s_at ATRX /// 
LOC7288

49 

alpha thalassemia/mental 
retardation syndrome X-

linked (RAD54 homolog, S. 
cerevisiae) /// similar to 
transcriptional regulator 

ATRX isoform 1 

1.27 -2.97 chromatin 
structure 

(Gibbons et al., 
2008; Ritchie et 

al., 2008) 

225992_at MLLT10 myeloid/lymphoid or 
mixed-lineage leukemia 

(trithorax homolog, 
Drosophila); translocated 

to, 10 

1.25 -3.30 TF (Chaplin et al., 
1995) 

202925_s_at PLAGL2 pleiomorphic adenoma 
gene-like 2 

1.25 -2.87 activator (Guo et al., 
2008; Ning et 

al., 2008) 
229394_s_at GRLF1 glucocorticoid receptor 

DNA binding factor 1 
1.23 -2.81 repressor (LeClerc et al., 

1991) 
213203_at SNAPC5 small nuclear RNA 

activating complex, 
polypeptide 5, 19kDa 

1.23 -3.15 TF (Henry et al., 
1998) 

225840_at TEF thyrotrophic embryonic 
factor 

1.23 -6.39 TF (Gachon et al., 
2006; Inukai et 

al., 2005) 
238549_at CBFA2T2 core-binding factor, runt 

domain, alpha subunit 2; 
translocated to, 2 

1.23 -2.11 corepressor (Martinez et al., 
2006) 

223218_s_at NFKBIZ nuclear factor of kappa light 
polypeptide gene enhancer 
in B-cells inhibitor, zeta 

1.22 -3.01 activator (Matsuo et al., 
2007) 

210253_at HTATIP2 HIV-1 Tat interactive 
protein 2, 30kDa 

1.22 -3.23 coactivator (Wolf et al., 
2007) 

226352_at JMY junction-mediating and 
regulatory protein 

1.21 -5.68 coactivator (Shikama et al., 
1999) 

222683_at RNF20 ring finger protein 20 1.21 -2.61 coactivator (Kim et al., 
2005) 

202983_at HLTF helicase-like transcription 
factor 

1.21 -3.83 activator (Ding et al., 
1999) 

223135_s_at BBX bobby sox homolog 
(Drosophila) 

1.21 -2.95 activator (Sanchez-Diaz 
et al., 2001) 

222895_s_at BCL11B B-cell CLL/lymphoma 11B 
(zinc finger protein) 

1.21 -2.66 repressor (Cismasiu et al., 
2008) 

212148_at PBX1 Pre-B-cell leukemia 
homeobox 1 

1.21 -50.88 activator (Van Dijk et al., 
1993) 

217862_at PIAS1 protein inhibitor of 
activated STAT, 1 

1.20 -3.03 coactivator/corepr
essor 

(Lin et al., 
2004) 

203964_at NMI N-myc (and STAT) 
interactor 

1.19 -7.72 transcription 
cofactor 

(Zhou et al., 
2000) 

1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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206495_s_at MIZF MBD2-interacting zinc 
finger 

1.19 -2.05 repressor/activato
r 

(Mitra et al., 
2003; Sekimata 
and Homma, 

2004) 
210555_s_at NFATC3 nuclear factor of activated 

T-cells, cytoplasmic, 
calcineurin-dependent 3 

1.19 -8.83 coactivator (Ho et al., 1995; 
Masuda et al., 

1995) 
200887_s_at STAT1 signal transducer and 

activator of transcription 1, 
91kDa 

1.19 -2.86 TF (Scarabelli et 
al., 2008) 

201970_s_at NASP nuclear autoantigenic sperm 
protein (histone-binding) 

1.18 -7.93 chromatin 
structure 

(Richardson et 
al., 2006) 

242121_at RNF12 Ring finger protein 12 1.18 -1.80 corepressor (Ostendorff et 
al., 2000) 

218031_s_at FOXN3 forkhead box N3 1.17 -4.09 repressor (Scott and Plon, 
2005) 

226872_at RFX2 regulatory factor X, 2 
(influences HLA class II 

expression) 

1.17 -15.30 TF (Horvath et al., 
2004) 

212769_at TLE3 transducin-like enhancer of 
split 3 (E(sp1) homolog, 

Drosophila) 

1.16 -1.97 corepressor (Brinkmeier et 
al., 2003) 

206724_at CBX4 chromobox homolog 4 (Pc 
class homolog, Drosophila) 

1.16 -4.66 corepressor (Satijn et al., 
1997) 

213293_s_at TRIM22 tripartite motif-containing 
22 

1.16 -5.21 corepressor (Tissot and 
Mechti, 1995) 

221606_s_at NSBP1 nucleosomal binding 
protein 1 

1.16 -2.78 activator (King and 
Francomano, 

2001) 
203358_s_at EZH2 enhancer of zeste homolog 

2 (Drosophila) 
1.16 -3.57 chromatin 

structure/represso
r? 

(Hoffmann et 
al., 2007) 

206542_s_at SMARCA
2 

SWI/SNF related, matrix 
associated, actin dependent 

regulator of chromatin, 
subfamily a, member 2 

1.15 -2.83 coactvator (Muchardt and 
Yaniv, 1993) 

208718_at DDX17 DEAD (Asp-Glu-Ala-Asp) 
box polypeptide 17 

1.15 -2.71 coactivator/corepr
essor 

(Fuller-Pace and 
Ali, 2008) 

218902_at NOTCH1 Notch homolog 1, 
translocation-associated 

(Drosophila) 

1.14 -2.74 TF (Nguyen et al., 
2006) 

1552685_a_at GRHL1 grainyhead-like 1 
(Drosophila) 

1.14 -1.89 TF (Henderson et 
al., 2008) 

226157_at TFDP2 Transcription factor Dp-2 
(E2F dimerization partner 

2) 

1.13 -4.60 TF (Zhang and 
Chellappan, 

1995) 
225935_at CUX1 // -

-- 
CDNA clone 

IMAGE:4816860 
1.13 -3.35 repressor (Stern et al., 

2008; Vanden 
Heuvel et al., 

1996) 
201996_s_at SPEN spen homolog, 

transcriptional regulator 
(Drosophila) 

1.13 -3.08 repressor (Shi et al., 2001) 

222667_s_at ASH1L ash1 (absent, small, or 
homeotic)-like (Drosophila) 

1.13 -2.75 chromatin 
structure 

(Gregory et al., 
2007) 

206858_s_at HOXC6 homeobox C6 1.13 -3.44 corepressor (Chariot et al., 
1996) 

1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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204791_at NR2C1 nuclear receptor subfamily 
2, group C, member 1 

1.12 -2.63 repressor (Tanabe et al., 
2007) 

202227_s_at BRD8 bromodomain containing 8 1.12 -2.71 coactivator (Monden et al., 
1999) 

209911_x_at HIST1H2
BD 

histone cluster 1, H2bd 1.12 -1.72 chromatin 
structure 

(Zhu et al., 
2005) 

207002_s_at PLAGL1 pleiomorphic adenoma 
gene-like 1 

1.12 -6.93 TF (Varrault et al., 
2006) 

219878_s_at KLF13 Kruppel-like factor 13 1.12 -1.91 activator (Song et al., 
1999) 

228038_at SOX2 SRY (sex determining 
region Y)-box 2 

1.10 -11.43 activator (Sharov et al., 
2008) 

202963_at RFX5 regulatory factor X, 5 
(influences HLA class II 

expression) 

1.10 -3.54 activator Villard et al, 
2000 

222016_s_at ZNF323 zinc finger protein 323 1.10 -26.86 TF (Pi et al., 2002) 

203140_at BCL6 B-cell CLL/lymphoma 6 
(zinc finger protein 51) 

1.10 -5.00 corepressor (Yoshida et al., 
1996) 

201566_x_at ID2 /// 
ID2B 

inhibitor of DNA binding 2, 
dominant negative helix-

loop-helix protein /// 
inhibitor of DNA binding 

2B, dominant negative 
helix-loop-helix protein 

1.09 -11.54 repressor (Murphy et al., 
2004) 

209538_at ZNF32 zinc finger protein 32 1.07 -2.75 TF (Mesa et al., 
1996) 

222749_at SUFU suppressor of fused 
homolog (Drosophila) 

1.07 -3.10 corepressor (Dunaeva et al., 
2003; Stone et 

al., 1999) 
214004_s_at VGLL4 vestigial like 4 (Drosophila) 1.05 -2.95 transcription 

cofactor 
(Chen et al., 

2004) 
213707_s_at DLX5 distal-less homeobox 5 1.05 -5.10 activator (Samee et al., 

2008) 
207558_s_at PITX2 paired-like homeodomain 2 1.04 -3.54 TF (Shang et al., 

2008) 
209989_at ZNF268 zinc finger protein 268 1.04 -2.64 activator (Shao et al., 

2006) 
226113_at ZNF436 zinc finger protein 436 1.04 -2.88 repressor (Li et al., 2006) 

239937_at ZNF207 Zinc finger protein 207 1.03 -2.19 TF (Pahl et al., 
1998) 

203542_s_at KLF9 Kruppel-like factor 9 1.02 -3.88 TF (Imataka et al., 
1994; Imataka et 

al., 1992) 
223210_at CHURC1 churchill domain containing 

1 
1.02 -2.63 activator (Sheng et al., 

2003) 
1559078_at BCL11A B-cell CLL/lymphoma 11A 

(zinc finger protein) 
1.00 -2.82 repressor (Senawong et 

al., 2005) 
209604_s_at GATA3 GATA binding protein 3 -1.00 -3.89 TF (Joulin et al., 

1991; Labastie 
et al., 1994) 

1566324_a_at MAF v-maf musculoaponeurotic 
fibrosarcoma oncogene 

homolog (avian) 

-1.00 -4.05 activator/represso
r 

(Hedge et al., 
1998; Kataoka 
et al., 2004) 

207826_s_at ID3 inhibitor of DNA binding 3, 
dominant negative helix-

loop-helix protein 

-1.01 -13.90 corepressor (Deed et al., 
1993) 

1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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Appendix C - Literature Support of the 245 Known Transcriptional Regulators 
(Refer to Chapter 4, Tables 7 and 8) 

Probe Set Gene 
Symbol 

Gene title MAX 
FC1 

MIN 
FC2 

Type of 
transcriptional 

regulators 

Reference 

202815_s_at HEXIM1 hexamethylene bis-
acetamide inducible 1 

-1.02 -2.76 repressor (Yoshikawa et 
al., 2008) Yik et 

al, 2003 
203221_at TLE1 transducin-like enhancer of 

split 1 (E(sp1) homolog, 
Drosophila) 

-1.02 -2.68 corepressor (Pickles et al., 
2002) 

220625_s_at ELF5 E74-like factor 5 (ets 
domain transcription factor) 

-1.03 -29.70 activator (Choi and 
Sinha, 2006) 

214058_at MYCL1 v-myc myelocytomatosis 
viral oncogene homolog 1, 

lung carcinoma derived 
(avian) 

-1.03 -4.90 TF (Atchley and 
Fitch, 1995) 

211126_s_at CSRP2 cysteine and glycine-rich 
protein 2 

-1.04 -2.94 coactivator (Wei et al., 
2005) 

219041_s_at REPIN1 replication initiator 1 -1.05 -4.53 repressor (Kim et al., 
2006) 

210993_s_at SMAD1 SMAD family member 1 -1.05 -3.74 activator (He et al., 2001) 

203408_s_at SATB1 SATB homeobox 1 -1.05 -3.42 chromatin 
structure 

(Han et al., 
2008) 

209398_at HIST1H1
C 

histone cluster 1, H1c -1.06 -1.93 repressor (Kim et al., 
2008) 

204999_s_at ATF5 activating transcription 
factor 5 

-1.06 -2.65 TF/corepressor (Pati et al., 
1999) 

229638_at IRX3 iroquois homeobox 3 -1.07 -10.58 repressor (Bilioni et al., 
2005) 

210319_x_at MSX2 msh homeobox 2 -1.08 -6.69 repressor (Takahashi et 
al., 2001b) 

221531_at WDR61 WD repeat domain 61 -1.08 -3.31 coactivator Zhu et al, 2005 
(Genes Dev) 

216197_at ATF7IP activating transcription 
factor 7 interacting protein 

-1.09 -5.25 activator or 
repressor 

(Chang et al., 
2005; Ichimura 

et al., 2005) 
223213_s_at ZHX1 zinc fingers and 

homeoboxes 1 
-1.10 -3.78 repressor (Kim et al., 

2007; Yamada 
et al., 2003) 

222146_s_at TCF4 transcription factor 4 -1.10 -16.36 activator/represso
r 

(Nguyen et al., 
2009) 

207469_s_at PIR pirin (iron-binding nuclear 
protein) 

-1.10 -11.73 transcription 
cofactor 

(Pang et al, 
2004) 

224976_at NFIA nuclear factor I/A -1.11 -4.52 TF/activator (Qian et al., 
1995) 

219517_at ELL3 elongation factor RNA 
polymerase II-like 3 

-1.15 -1.43 regulator (Miller et al., 
2000) 

210239_at IRX5 iroquois homeobox 5 -1.15 -15.05 TF (Kerschensteine
r et al., 2008) 

222018_at NACA /// 
NACA3P 

/// 
NACAP1 

nascent polypeptide-
associated complex alpha 

subunit /// nascent-
polypeptide-associated 

complex alpha polypeptide 
pseudogene 1 /// NACA 

family member 3 
pseudogene 

-1.16 -2.76 coactivator (Akhouayri et 
al., 2005) 

227047_x_at ZBTB4 zinc finger and BTB 
domain containing 4 

-1.18 -2.62 repressor (Filion et al., 
2006) 

223275_at PRMT6 protein arginine 
methyltransferase 6 

-1.18 -15.03 transcriptional 
regulator/chromat

in structure 

(Hyllus et al., 
2007; Miranda 

et al., 2005) 
1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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Probe Set Gene 
Symbol 

Gene title MAX 
FC1 

MIN 
FC2 

Type of 
transcriptional 

regulators 

Reference 

212346_s_at MXD4 MAX dimerization protein 
4 

-1.19 -3.12 repressor (Hurlin et al., 
1995; Marcotte 

et al., 2005) 
226895_at NFIC Nuclear factor I/C 

(CCAAT-binding 
transcription factor) 

-1.23 -3.91 TF/activator (Qian et al., 
1995; 

Wenzelides et 
al., 1996) 

220225_at IRX4 iroquois homeobox 4 -1.27 -3.37 TF (Garriock et al., 
2001) 

217991_x_at SSBP3 single stranded DNA 
binding protein 3 

-1.30 -2.72 TF (Wu, 2006) 

1EGF Max FC: maximum fold change observed by EGF over the whole treatment time.  
2EGF Min FC: minimum fold change observed by EGF over the whole treatment time. 
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